0

0

Fs

students.

Points

Selecting the Basis for Grading NTTCHP

Absolute Grading Common type is the use of letter grades • defined by a 100-point system. for individual test - might represent the percentage of item correct or total number of points earned as final grade, typically represents a combination of grades Δ =

90 - 100 95 - 100 91 - 100 Most appropriate in programs where: B = 80 - 8985 - 94 86 - 90 the set of learning tasks has been 0 C = 70 - 79 75 - 84 71 - 85 clearly specified 65 - 74 D = 60 - 69 75 - 80 standards have been defined in terms of the learning tasks F = below 60 below 65 below 75 assessment techniques has been designed for criterion-referenced interpretation Percent of **Relative Grading** Percent of students are typically ranked in order of students students performance 10 - 20 15 А students ranking highest receive a letter в 25 20 - 30grade of A, the next a B, and so on what proportion is predetermined С 45 40 - 50 use of range favored because it makes D 10 - 20 10 allowance for differences in ability level F 5 0 - 10of the class in advanced courses larger proportion of Older books recommended using normal curve. This • As and Bs should be assigned and fewer resulted in the same percent of As and Fs (e.g., 7%) and Bs and Ds (e.g., 38%). However it is being discouraged because measures of • achievement in classroom seldom yield normally distributed scores. **Combining Absolute and Relative Grading** Grades should represent the degree of which instructional objectives are achieved by PASS-FAIL decision should be based on whether or not the minimal objectives have been mastered! Absolute Grading Pass – Fail (MPL) Requires ABSOLUTE GRADING Decision using Above the Pass-Fail cutoff point, grades should be assigned on a relative basis. Why? Because students' scores will tend to be spread out in terms of their Assign **Relative Grading** degree of development beyond the Grades to (Developmental minimal level. pass using Outcomes) students Minimal objectives - minimum essentials that must be mastered if a student is to proceed to the next level of instruction Developmental - other outcomes that are never fully achieved but towards which students can show varying degrees of progress.

Points

Points

NTTCHP

Combining Grades:

How much influence each of scores and not the num	h element has in a composite score is the off total point.	s determined by the spread, or variability,							
	Assume that we have two measures of achievement and we want to give them equal weight in a grade. Our two sets of achievement scores have score range as follows:								
	Test Scores	20 to 100 30 to 50							
	Laboratory Score								
	If we simply added together a student's test score and score on laboratory work, the grade would be determined largely by the test score. (composite score does not represent equal weighing)								
		Student 1 Student 2							
	Test scores	100 20							
	Laboratory score	30 50							
	Composite score	130 70							
What teacher would usually do is to attempt to give equal weight by making the top possible score (for example, multiplying score in laboratory work by 2).	Test scores Laboratory score Composite score Our composite scores the maximum possi equal weights either	Student 1 Student 2 100 20 re (x2) 60 100 e 160 120 s make clear that equalizing ible score does not provide							
	We must multiply each laboratory score by 4 to equalize the spread of scores and, thus given them equal weight. Student 1 Student 2 Test scores 100 20 Laboratory score (x4) 120 200 Composite score 220 220								
Combining Crodes									

Combining Grades

- 1. Select assessments to be included in the composite score and assign percentages.
- 2. Record desired weight for each assessment.
- 3. Equate range of scores by using multiplier
- 4. Determine the weight to apply to each score by multiplying "desired weight" by "multiplier to equate ranges."

Compone	nts		Des Wei	ired ght	Range of Scores	Multipl Equa Ranç	ier to ate ges	Weight to Apply to Each Score	
1. Test scores	s	50%	2		20 to 100 (80)		1	2 X 1 = 2	
2. Laboratory	work	25%	1		30 to 50 (20)		4	1 X 4 = 4	
3. Homework	3. Homework		1		0 to 10 (10)	8		1 X 8 = 8	
Computing The Composite Scores									
	Raw Scores				Weighted Scores		Composite		
Students	1.	2.	3.		1. (x2)	2.(x4)	3.(x8)	1. (w)+2.(w)+3.(w)	
Dave	93	42	8	(143)	186	168	64	418	
Derek	84	45	10	(139)	168	180	80	428	
Maria	85	47	7	(139)	170	188	56	414	
Tricia	95	35	10	(140)	190	140	80	410	

Z scores and T scores

To understand Z - scores, let us start with a scenario.

- Kim has a score of 50 in her first exam and a score of 50 in her second exam.
- On which exam did Kim do best?

Scenario 1

- In first exam, Kim's exam score is 10 points above the mean.
- In the second exam, Kim's exam score is 10 points below the mean.

© 2015

Prepared by:

Nemuel S. Fajutagana, MD, MHPEd Professor and Dean NTTCHP – UP Manila

Major Reference

Gronlund, N. E., & Waugh, K. C. (2012). Assessment of Student Achievement . Pearson.

© 2015