

Circulatory System

- Transports and distributes essential substances to tissues
- Removes metabolic byproducts
- Other functions:
 - Regulate body temperature 0
 - Maintenance of fluid balance
 - Adjustment of 02 and nutrient supply 0

Veins	Arteries
Venules < Capillaries <	Arterioles Head and neck arteries
	Arm arteries
	Pulmonary veins
Pulmonary	Brachial arteries
artery	ter -
1 (((
	Aorta
Right atrium	Left atrium
→	
	Coronany
Venae cavae	arteries
Right	Splanic
ventricle	artery
	Toris Tauli adaina
Hanatia	Trunk arteries
vein He	epatic artery
Portal v	ein 500
Peritubular	
capillaries	
Contraction of the second	Renal arteries
Efferent arte	erioles Afferent
	Giomeruli arterioles
1	Pelvic arteries
	_
20	
	Leg arteries

Circulatory System

Through:

- Heart:pump
- Blood vessels: distributing and collecting tubes
- Capillaries: thin vessels that permit rapid exchange between tissues and vascular channels
- Blood heterogenous fluid composed of cells that serves as a transport vehicle for the gases, nutrients, waste products, cells, and hormones

5

Objectives:

- Describe the functions of the parts of the hematopoietic system
- Describe the function of blood
- Describe the physical characteristics of blood
- Describe the principal components of blood
- Explain the process of the formation of blood components
- Describe the structure, functions, life cycle, and production of red blood cells
- Describe how the blood transports oxygen and carbon dioxide
- Describe the structure, functions, and production of white blood cells
- Describe the structure, function, and origin of thrombocytes
- Describe three mechanisms that contribute to hemostasis
- Identify the stages of blood clotting
- Explain the various factors that promote and inhibit blood clotting
- Explain the significance of blood groups and types

Parts of the Hematologic System

1. Bone Marrow - the site of hematopoeisis or blood cell formation

2. Blood

- a. Blood cells
 - i. Erythrocytes
 - ii. Leukocytes
 - iii. Thrombocytes
- b. Plasma fluid component (90% water, 8% protein, 1% inorganic salts, 0.5% lipids, 0.1% glucose)
- 3. Reticuloendothelial System- neutrophils, special tissue macrophages and the network of fibers that support the functions of phagocytic cells

Blood

- A liquid connective tissue that consists of cells surrounded by a liquid extracellular matrix (plasma)
- General functions:
- 1. Transportation
- 2. Regulation: pH, body temperature, blood osmotic pressure
- Protection: hemostasis and defense (transit of leukocytes)

9

Physical Characteristics of Blood Denser and more viscous than water 38 degrees C pH 7.35-7.45 (slightly alkaline) Color varies with oxygen content Bright red: saturated with oxygen Dark red: unsaturated Constitutes 20% of extracellular fluid (8% of body mass) 5-6 L in adult males 4-5 L in adult females

ADA

Components of Blood (Substances in Blood Plasma)

CONSTITUENT	DESCRIPTION / FUNCTION				
Water	Solvent and suspending medium. Absorbs, transports, and releases heat				
Plasma Proteins – mostly produced by the liver	Colloid osmotic pressure; blood viscosity; transport of hormones, fatty acids, and calcium,; regulation of pH				
Albumin					
Globulins	 Immunoglobulins: help attack pathogens (viruses and bacteria) Alpha and beta: transport of iron, lipids, and fat-soluble vitamins 				
Fibrinogen	Blood clotting				

13

Components of Blood (Substances in Blood Plasma)

CONSTITUENT	DESCRIPTION / FUNCTION			
Other Solutes				
Electrolytes	Maintain osmotic pressure and essential roles in cell functions			
Nutrients	Cell function, growth, and development			
Gases	 Oxygen: needed for cellular respiration and energy production Carbon dioxide: blood pH regulation 			
Regulatory substances	 Enzymes: catalyze chemical reactions Hormones: regulate metabolism, growth, and development Vitamins: cofactors for enzymatic reactions 			
Waste Products	Mostly breakdown products of protein metabolism (urea, uric acid, creatinine, bilirubin, ammonia)			

Objectives:

- Describe the functions of the parts of the hematopoietic system
- Describe the function of blood
- Describe the physical characteristics of blood
- Describe the principal components of blood
- Explain the process of the formation of blood components

Hematopoeisis

- pluripotent stem cells → hematopoeitic stem cells → progenitor cells (including colony or burst-forming units) → precursor cells/blasts
 - *Pluripotent stem cells* cells derived from the mesenchyme that have the capacity to develop into many different types of cells
 - Hematopoietic cells: Myeloid and lympoid stem cells
 - Progenitor cells no longer capable of reproducing themselves and are committed to giving rise to more specific elements of blood
 - Precursor cells undergo cell division to develop actual formed elements of blood

Objectives:

- Describe the functions of the parts of the hematopoietic system
- Describe the function of blood
- Describe the physical characteristics of blood
- Describe the principal components of blood
- Explain the process of the formation of blood components
- Describe the structure, functions, life cycle, and production of red blood cells

Blood (Cellular Components) Erythrocytes (Red Blood Cells) biconcave disc: increased surface area for diffusion of gases

- 8 micrometers
- Thin, flexible membranes: ability to deform
 - Contain glycoipids in the membranes that act as antigens: basis for blood groups/types
- Lack a nucleus and other organelles

Blood (Cellular Components)

Erythrocytes (Red Blood Cells)

- Contain the oxygen-carrying ironcontaining protein **hemoglobin**
 - Gives blood its red color
 - iron concentration in blood: 50-150 ug/dl

23

Blood (Cellular Components)

Erythrocytes (Red Blood Cells)

- Hemoglobin composed of
 - Heme ringlike nonprotein pigment attached to each globin chain that reversibly bind to oxygen molecules
 - Globin protein composed of four polypeptide chains (2 alpha and 2 beta chains)
 - Also binds 23% of carbon dioxide
 - May release bound nitric oxide (causes vasodilation)

Blood (Cellular Components)

- 1. Erythrocytes (Red Blood Cells):lifespan: 120 days
 - Older, more fragile RBCs destroyed by macrophages in the spleen and liver
 - hemoglobin \rightarrow
 - Heme
 - Iron recycled by attaching to transferrin (complex taken in RBC precursor cells through receptor-mediated endocytosis)
 - Non-iron portion → biliverdin → bilirubin → released by liver cells as bile → converted by bacteria in the Large intestine into urobilinogen → most converted to stercobilin (pigment in stool)
 - Globin broken down into amino acids

Oxygen Transport

Factors affecting hemoglobin-oxygen binding and dissociation:

- 1. Partial Pressure of Oxygen
- Most important factor that determines O2-binding
- The higher the PO2, the more O2 combines with hemoglobin;
 - When the PO2 is between 60-100 mmHg, hemoglobin is 90% or more saturated with O2
 - Pulmonary capillaries: High oxygen-binding
 - Tissue capillaries: decreased oxygenbinding

29

Oxygen Transport

Factors affecting hemoglobin-oxygen binding and dissociation:

- Acidity (low pH, high H+ concentration in blood) – decreases hemoglobin affinity for oxygen; increased oxygen dissociation/unloading (shift of the oxygen-hemoglobin dissociation curve to the right [Bohr Effect])
 - Hemoglobin as buffer for hydrogen ions (H+ binding to amino acids in Hb → decreased oxygen binding)

Oxygen Transport Factors affecting hemoglobin-oxygen binding and dissociation: **Temperature** 4. As temperature increase (fever and exercise), oxygen dissociation increases 2,3-bisphosphoglycerate (BPG) 5. Formed during breakdown of glucose to produce ATP in glycolysis Binds to amino groups in two beta globin chains \rightarrow decreased 02 binding at the heme sites • More O2, more O2 dissociation. Hormones and higher altitudes Fetal Hemoglobin (Hb-F) - binds BPG less strongly; higher O2 affinity (compared adult hemoglobin)

Blood (Cellular components)

White Blood Cells/Leukocytes

- Have nuclei and and other organelles
- General function: *combat pathogens* by phagocytosis or through the immune response
- Classified as granular or agranular

35

Blood (Cellular components)

White Blood Cells/Leukocytes

- General function: combat pathogens
- Emigration or diapedesis white blood cells roll along then stick to the endothelium; then squeeze between endothelial cells
 - Adhesion molecules molecules which which help WBCs stick to the endothelium
 - Selectins adhesion molecules in damaged endothelium
 - Integrins adhesion molecules in neutrophils

Blood (Cellular components) White Blood Cells/Leukocytes General function: combat pathogens through: Phagocytosis – neutrophils and macrophages ingest pathogens and dispose dead matter (neutrophils first, then monocytes) Chemotaxis – release of chemicals by microbes that attract phagocytes Upon ingestion: release of chemicals to destroy the pathogen (lysozyme and oxidants), defensins Support for inflamation through the release of granules Immunity

Blood (Cellular components) Agranular/ Mononuclear Leucocytes: i. Lymphocytes - directed towards specific antigens NK Cells Cytotoxic T Lymphocytes Helper T Lymphocytes B Lymphocytes → Plasma cells ii. Monocytes – kidney-shaped nucleus; phagocytic and mature into macrophages

39

Blood (Cellular Components)

Platelets

- non-nucleated fragments of cytoplasm released from megakaryocytes
 - Influenced by **thrombopoietin** produced in the liver
 - form a platelet plug when exposed to damaged tissue
 - Adhere to exposed collagen and basement membrane proteins
 - activated to contract and release granule contents → platelet recruitment and coagulation factors activation

Hemostasis

Process of preventing blood loss from intact vessels and stopping bleeding from severed vessel

- 1. Vascular spasm: contraction of the circularly arranged smooth muscle in blood vessels
- 2. Primary hemostasis: Platelet Plug Formation

41

Hemostasis

Process of preventing blood loss from intact vessels and stopping bleeding from severed vessel

- 2. Primary hemostasis: Platelet Plug Formation
 - Platelet adhesion to collagen and von Willebrand Factor exposure in the injured vessel
 - 2. Platelet activation extend projections to interact with one another and release contents of vesicles
 - Activation of nearby platelets: ADP and Thromboxane A2
 - Vasoconstrictors: serotonin and thromboxane A2

Hemostasis

Process of preventing blood loss from intact vessels and stopping bleeding from severed vessel

2. Primary hemostasis: Platelet Plug Formation

3. Platelet aggregation – adherence of the newly recruited and activated platelets to the originally activated platelets forming the platelet plug

43

Hemostasis

Process of preventing blood loss from intact vessels and stopping bleeding from severed vessel

- 1. Vascular spasm: contraction of the circularly arranged smooth muscle in arteries and arterioles
- 2. Primary hemostasis: Platelet Plug Formation
- 3. Secondary hemostasis: Blood Clotting
 - Clot network of fibrin, an insoluble protein fiber, in which formed elements of blood are trapped

Hemostasis

Process of preventing blood loss from intact vessels and stopping bleeding from severed vessel

- 3. Secondary hemostasis: Blood Clotting
 - Coagulation Cascade
 - Extrinsic pathway: tissue factor or thromboplastin from damaged tissue leaks into blood and activates Clotting Factor X
 - Intrinsic pathways: activators are in contact with blood or in blood activating Clotting Factor XII

45

Hemostasis

Process of preventing blood loss from intact vessels and stopping bleeding from severed vessel

- 3. Secondary hemostasis: Blood Clotting
 - Coagulation Cascade
 - Common pathway: prothrombinase activates prothrombin to thrombin; thrombin converts fibrinogen to fibrin
 *Vitamin K – required for the synthesis of CF IX, X, VII, II
 - Clot Retraction consolidation or tightening of the fibrin clot due to platelet contraction

Antithrombotic Mechanisms

- Preserve blood fluidity and limits clotting to specific sites of injury
 - Endothelial cells: platelet adhesion and aggregation inhibitors (prostacyclin, nitric oxide, anticoagulant factors, and fibrinolysis mechanisms (tissue plasminogen activators)
 - Plasma: antithrombin (neutralizes thrombin and other activated coagulation factors), protein C, protein S, Tissue factor pathway inhibitor
 - Fibrinolytic system (activated to dispose intravascular fibrin)
 - Plasmin degrades fibrin

47

Blood Groups

- Determined by agglutinogens
- 24 blood groups, each with 2 or more blood types

Agglutinogens – genetically-determined glycoproteins and glycolipids in the surface of erythrocytes that act as antigens

• Determine whether the body will develop agglutinins

Agglutinins – antibodies in plasma that react with agglutinogens

Agglutination Reactions

- An antigen-antibody reaction that causes clumping or red blood cells that happens when the recipient's plasma agglutinins react with the agglutinogens present in the donated blood.
- Causes hemolysis → kidney injury

	BLOOD TYPE			
CHARACTERISTIC	Α	В	AB	0
Agglutinogen (antigen) on RBCs	A	В	Both A and B	Neither A nor B
Agglutinin (antibody) in plasma	Anti-B	Anti-A	Neither anti-A nor anti-B	Both anti-A and anti-B
Compatible donor blood types (no hemolysis)	A, 0	B, O	A, B, AB, O	0
Incompatible donor blood types (hemolysis)	B, AB	A, AB	_	A, B, AB

A Rh-negative mother will develop antibodies to rhesus factor if blood from a Rh-positive fetus leaks into the maternal circulation, especially during delivery. If the mother carries another Rh-positive fetuses, causing hemolysis

Significance of Blood Groups and Typing

- Agglutination reactions can be fatal to the recipient of blood
 In the case of Rh blood groups, they may be fatal to the baby.
- It is important to prevent agglutination reactions by:
- 1. Knowing the blood type of the patient and the donor
- 2. Ensuring compatibility of blood though crossmatching prior to transfusion
- 3. Verifying the blood-typing and crossmatching results prior to transfusion

References

- Tortora, G. and Derrickson, B. Principles of Anatomy and Physiology, 13th Edition
- Young, B., Woodford, P., and O'Dowd, G. Wheater's Functional Histology: A Text and Colour Atlas, 6th Edition
- Hinkle, J. and Cheever, K. Brunner and Suddarth's Textbook of Medical-Surgical Nursing, 14t Edition