University of the Philippines Manila **COLLEGE OF NURSING** Sotejo Hall, Pedro Gil St., Ermita, Manila

NURSING 119

Estimating and Projecting Populations

Using the three different mathematical methods, five types of problems can be estimated:

- 1. the population size for any future date (\mathbf{P}_t)
- 2. the population count for any date in the past (P_o)
- 3. the annual rate of growth (**r**) or the absolute increase per year (**b**)
- 4. the length of time (t) it takes for a population to reach a certain number
- 5. the length of time (**t**^{*}) it would take for a population to double its size

Estimation of Population Size for a Future Date (Pt)

The population of City X as of May 1, 2020 census was 60,559,116. Assuming that City X's population increases by 1,000,000 persons per year on the average, how large will City X population be by July 1, 2025?

(Population size as of July 1 of any year can be considered as the midyear population or the average population size during the year)

Arithmetic Method	Geometric Method	Exponential Method
$P_t = P_o + bt$	$\mathbf{P}_{t} = \mathbf{P}_{o} (1 + \mathbf{r})^{t}$	$P_t = P_o e^{rt}$
Step 1. Find the exact duration (in years) between the date for which the population size is known and the future	Step 1. We need to have an estimate on the rate of growth, r. Assume that for the given problem, $r = 2.33\%$.	Step 1. Just like in the geometric method, substitute the values of $r = 2.33\%$ and $t = 5.17$ years.
date for which one would like to estimate the population size.	Step 2. Substitute values of r = 2.33% and t = 5.17 years	$Pt = 60,559,116 x e^{(0.0233)(5.17)}$
2025 7 1	P₁ = 60 559 116 (1+	= 60,559,116 e ^{0.1205}
<u>-2020 5 1</u>	0.0233) ^{5.17}	= 60,559,116 (1.1281)
5 yrs 2 mos 0 day	$(1.0233)^{5.17}$	Pt = 68,316,739
5 + 2/12 + 0/365 t = 5.17 years	$P_t = 68,217,422$	The midyear population of City X by 2025 using the exponential method of estimate is 68,316,739

Arithmetic Method	Geometric Method	Exponential Method
Step 2. Substitute values	The midyear population of	Note: The e ^x function of a
in the formula.	City X in 2025 using the geometric method of	scientific calculator will be used; the mathematical
$P_t = 60,559,116 +$	estimate is 68,217,422.	constant of which is 2.71.
(1,000,000) (5.17)		
= 60,559,116 +		
5,170,000		
$P_t = 65,729,116$		
The midyear population		
of City X in 2025 is		
arithmetic method of		
population estimate.		

Estimation of a Population Size on a Previous Date (Po)

We would like to know how large the population of City X in December 31, 2018. The information that we have in order to estimate the population size on the said date are the yearly absolute increase (b), population count made later than December 31, 2018 and time interval between the two dates. In this example, let us use the census result of May 1, 2020 which is 60,559,116.

Arithmetic Method	Geometric Method	Exponential Method
$P_o = P_t - bt$	$P_o = \frac{P_t}{(1+r)^t}$	$P_{o} = \frac{P_{t}}{e^{rt}}$
Step 1. Solve for t, which is the number of years between May 1, 2020 and December 31, 2018.	Step 1. Determine given data.	Step 1. Determine given data.
2020 5 1 - 2018 12 31	Pt = May 1, 2020 population size, 60,559,116	Pt = May 1, 2020 population size, 60,559,116
2 yrs 4 mos 0 day	t = 2.33 years r = 2.33%	t = 2.33 years r = 2.33%
2 + 4/12 + 0/365 t = 2.33 years		

Arithmetic Method	Geometric Method	Exponential Method
Step 2. Substitute values	Step 2. Substitute values.	Step 2. Substitute values.
b = 1,000,000 t = 2,33 years	60,559,116 Po =	60,559,116 Po =
	$(1 + 0.0233)^{2.33}$	e ^(0.0233) (2.33)
$P_{\circ} = 60,559,116 - (1,000,000) (2.33) = 60,559,116 - $	60,559,116 =	60,559,116 =
2,330,000	(1.0233) ^{2.33}	e ^(0.0543)
P _o = 58,229,116	60,559,116	60,559,116
City X's population	1.0551	1.0558
2018 was 58,229,116.	P _o = 57,396,565	P _o = 57,358,511
	Using the geometric method of estimate, City X's population size in December 31, 2018 was 57,396,565 assuming a 2.33% rate of growth.	Using the exponential method of estimate, City X's population size in December 31, 2018 was 57,358,511 assuming a 2.33% rate of growth.
	Note: The x^{y} function of scientific calculator will be used to compute for the value of $(1 + r)^{t}$	

Estimation of the Absolute Increase Per Year (b) or the Constant Rate of Growth (r)

Determine the absolute increase per year or the constant rate of growth of City X between May 1, 2010 to May 1, 2020 given that the population counts were 48,098,460 and 60,559,116 respectively.

Given: $P_t = 60, 559,116$ (May 1, 2020) $P_o = 48,098,460$ (May 1, 2010) t = 10 years

Arithmetic Method	Geometric Method	Exponential Method
P _t – P _o b = t	$r = \begin{array}{c} t \\ P_t \\ P_o \end{array} - 1$	In (Pt/P₀) r =t
Substituting the values:	Substituting the values: $r = 10 \int \frac{60,559,116}{48,098,460} - 1$ $= 10 \int 1.2591 - 1$ $= 1.0233 - 1$ $= 0.0233 \times 100$ $r = 2.33\%$ The annual rate of growth of City X during the period between 2010 to 2020 was 2.33\% Note: The x ^{1/y} function of the calculator may be used.	Substituting the values: 60,559,116 $\ln 48,098,460r =$

Estimation of the Amount of Time (t) It Takes for a Population to Reach Certain a Number

Given the 2020 City X Population of 60,559,116 and assuming that it increases by 1,000,000 each year, how long will it take for the population to be 80,000,000?

Arithmetic Method	Geometric Method	Exponential Method
P _t – P _o t =	In (P _t /P _o) t =	In (P _t /P _o) t =
b	ln (1 + r)	r

Arithmetic Method	Geometric Method	Exponential Method
Given:	Assuming that $r = 2.33\%$,	Substituting the values:
$P_t = 80,000,000$	substitute the values:	
P _o = 60,559,116		80,000,000
b = 1,000,000	80,000,000	In
	In	60,559,116
Substituting the values:	60,559,116	t =
	t =	0.0233
80,000,000 -	ln (1 + 0.0233)	
60,559,116		ln (1.3210)
t =	In (1.3210)	=
1,000,000	=	0.0233
1 10 1	In (1.0233)	1 11 05
t = 19.4 years	0.0704	t = 11.95 years
It will take 10.4 years for	0.2784	It will take 11 OF vegers for
It will take 19.4 years for	= 0.0220	City X to reach the
	0.0230	City X to reach the
	1 - 121 vooro	
60,559,116 in 2020 to	t = 12.1 years	outed rate of growth of
reach 80,000,000.	It will take a little over 12	
	It will take a little over 12	2.3%.
	80,000,000 given an applied	
	rate of growth of 2 33%	
	1816 01 910 Will 01 2.33 /0	

Estimation of Doubling Size (t*)

How long will it take for City X with a population size of 60,559,116 as of May 1, 2020 to double in size?

Arithmetic Method	Geometric Method	Exponential Method
P _o t* = b	In (2) t* = In (1 + r)	In (2) t* = r
Assuming an average increase of 1,000,000 per year (b), substitute the values:	Assume that r = 2.33%, substitute the values: In (2)	Assume that r = 2.33%, substitute the values: In (2)
60,559,116	In (1 + 0.0233)	0.0233
1,000,000	0.6931	0.6931
t* = 60.6 years	0.0230	0.0233

It will take 60.6 years for	t* = 30.1 years	t* = 29.75 years
City X to double its size		
assuming that there	It will take 30 years for City	It will take 29.75 years for
were 1,000,000 persons	X to double its size	City X to double its size
that are added to the	assuming an annual growth	assuming an annual rate of
population per year	of 2.33%	growth of 2.33%

Reference: Mendoza et al; *Foundations of Statistical Analysis for the Health Sciences*, 2000

Prepared for N119 FS AY 2024-2025 LBP Dones 08.13.24