
Structure and Function of the Renal and Urologic Systems

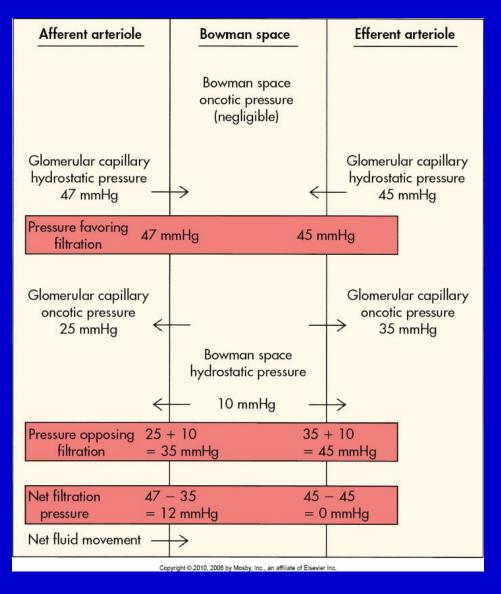
Kidneys

- Retroperitoneal- posterior to the peritoneum of abdominal cavity. Anatomical landmark: costovertebral angle
- Renal capsule- dense irregular connective tissue that serves as barrier against trauma and maintains shape of kidney
- Renal fascia- dense irregular connective tissue; anchors with other surrounding structures
- Hilum- thru which the ureter and blood vessel emerge

- Renal cortex- superficial layer
- Renal medulla- deep inner region
- Renal pyramids- cone-shaped composition of the medulla
- Renal columns- portions of renal cortex that extend to the whole kidney
- Minor calyx- cuplike structure that drains wastes from papillary ducts
- Major calyx- drains wastes from minor calyx
- Renal pelvis- large cavity that drains urine from the major calices

Nephron

- 1.2 million nephrons per kidney
- Functional unit of the kidney
 - Superficial cortical and midcortical nephrons (80 to 85%)
 - Have short loop of Henle
 - Juxtamedullary nephrons (15-20%)
 - Have long loop of Henle
 - Long loop of Henle enable kidneys to excrete very dilute or very concentrated urine

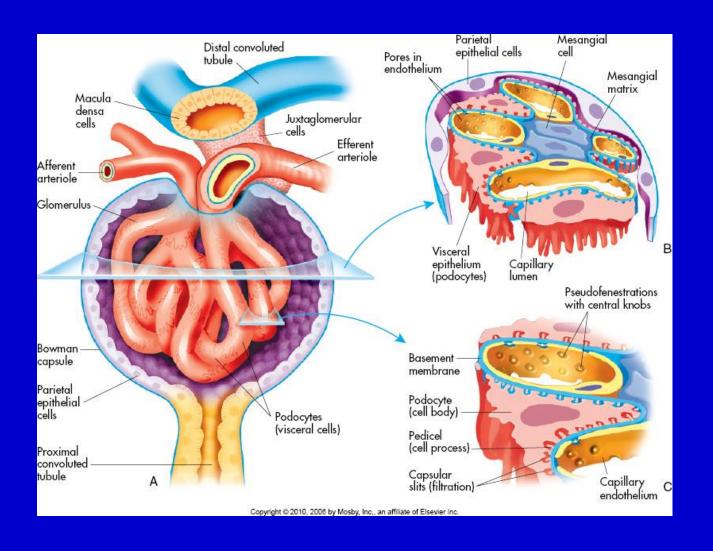

Nephron

- Functional units of the kidneys
- Two parts:
 - Renal corpuscle
 - Glomerulus- capillary network between afferent and efferent arterioles
 - Bowman capsule- double-walled epithelial cup that surround the glomerulus
 - Renal tubules
 - Proximal convoluted tubule
 - Loop of Henle
 - Distal convoluted tubule

Glomerulus

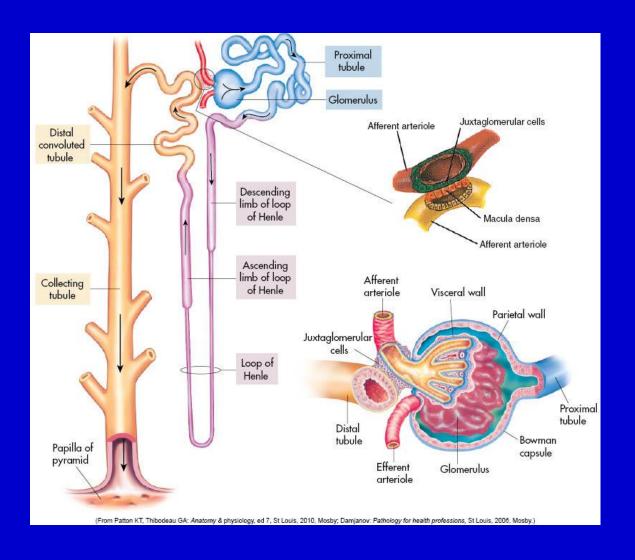
- Glomerular filtration- first step in urine production
- Most solutes in blood plasma → glomerular capillaries → glomerular capsule (Bowman)
 → rental tubule
- Net filtration pressure
 - Formula: NFP= GBHP CHP BCOP
 - GBHP- glomerular blood hydrostatic pressure
 - CHP- capsular hydrostatic pressure
 - BCOP- blood colloid osmotic pressure

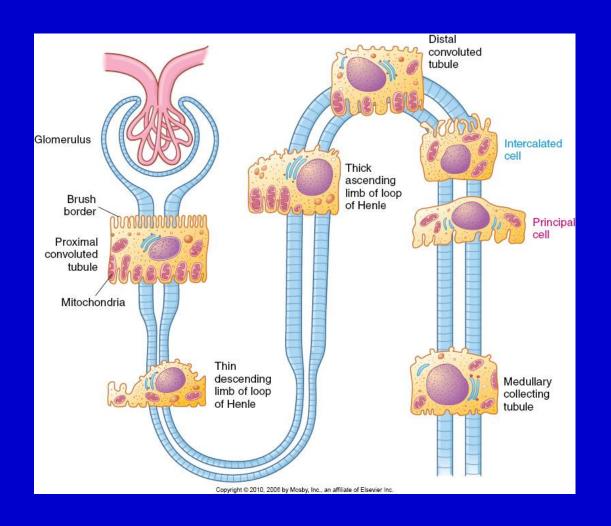
Glomerular Filtration


Glomerulus

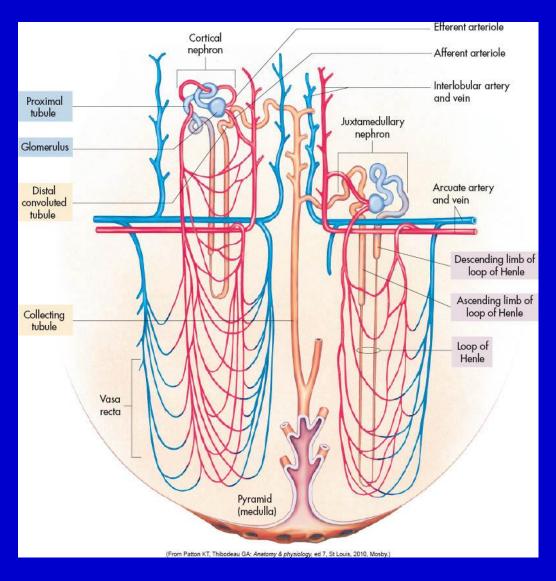
- Glomerular filtration membrane
 - Glomerular endothelium- has larges fenestrations (pores).
 - Permits all solutes in blood plasma to exit glomerular capillaries except blood cells and platelets
 - Basement membrane- consists of collagen and proteoglycans. Prevents filtration of plasma proteins
 - Capillary epithelium
 - Also referred to as podocytes or visceral epithelium
 - Filtration slits
 - Permits passage of molecules smaller than 0.007 micrometer

Nephron


- Juxtaglomerular apparatus
 - Juxtaglomerular cells- modified smooth muscles cells part of the afferent arterioled
 - Macula densa- columnar tubule cells that are crowding together; near the nephron and part of the ascending loop of Henle
 - Main function is to regulate BP and filtration rate of the glomerulus
 - Secrete renin when BP in the arteriole falls.


Juxtaglomerular Apparatus

Nephron


- Renal tubules
 - Proximal tubule- simple cuboidal epithelial cells with microvilli
 - Loop of Henle- simple squamous epithelial cells
 - Distal tubule- simple cuboidal epithelial cells
 - Collecting duct- simple cuboidal epithelium
 - Principal cells- have receptors of ADH
 - Intercalated cells- have a role in regulation of blood pH

Blood Vessels

- Renal arteries- delivers 20-25% of resting CO to kidneys
- Interlobar arteries- pass thru renal columns and between pyramids
- Arcuate arteries- arch b/w medulla and cortex
- Interlobular arteries
- Afferent arterioles- one afferent arteriole for each nephron
- Glomerular capillaries
- Efferent arterioles-
- Peritubular capillaries and vasa recta- surround tubular parts of the nephron; vasa recta are long loopshaped capillaries

Renal Blood Flow (RBF)

- Receive 1000 to 1200 ml of blood per minute
 - > 600-700 ml as plasma (renal plasma flow [RPF])
- Glomerular filtration rate (GFR)
 - Amount of filtrate formed in all the renal corpuscles of both kidneys each minute
 - Mean GFR: 125ml/min (males); 105 ml/min (females)
 - If GFR is high- needed substances may pass so quickly; if GFR is low- nearly all filtrate is reabsorbed
 - Directly related to the perfusion pressure in the glomerular capillaries (RBF)

- Two ways:
 - > (1) adjusting blood flow into and out of glomerulus
 - (2) altering the glomerular capillary surface area available for filtration
- Renal Autoregulation
 - Myogenic mechanism (stretch)
 - Tubuloglomerular feedback (NaCl content)
- Neural regulation
 - Sympathetic nervous system
 - Vasoconstriction (diminishes GFR)

- Renal Autoregulation
 - Myogenic mechanism (stretch)
 - BP increase stretches the walls of the afferent arteriole →
 afferent arteriole contracts → narrows the arteriole's
 lumen → dec. in blood flow → dec GFR
 - Tubuloglomerular feedback (NaCl content)
 - Macula densa senses increased passage of Na, Cl, H20
 as a result of increased BP → decreased production of
 NO by JGA → vasoconstriction of afferent arterioles →
 decrease GFR

- Neural regulation
 - Sympathetic nervous system
 - ➤ Norephinephrine causes vasoconstriction → dec GFR
 - ➤ At rest, low sympathetic ANS stimulation → arterioles are dilated
 - ➤ With moderate sympathetic ANS stimulation → constriction of arterioles → dec GFR slightly
 - With greater ANS stimulation → vasoconstriction predominate → GFR drops → (1) reduces UO; (2) permits greater blood flow to other body tissues

- Hormonal regulation
 - Angiotension II reduces GFR
 - Potent vasoconstrictor that narrows both afferent and efferent arterioles and reduces renal blood flow
 - Atrial natriuretic peptide increases GFR
 - Increase blood vol → inc stretching of atria → stimulates secretion of ANP → relaxes mesangial cells → increase capillary surface area available for filtration

Renal Functions

- Regulation of blood volume and serum osmolarity (water/sodium balance)
 - > ADH
 - Renin-angiotensin-aldosterone system

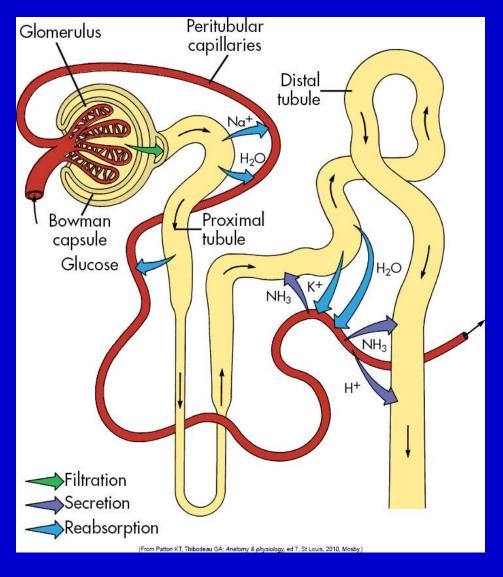
Renal Functions

- Excrete metabolic wastes
 - Creatinine, urea (end product of protein metabolism), certain drugs
- Regulate acid-base balance
 - Balance of H⁺ and HCO₃
- Secrete hormones
 - Renin-angiotensin-aldosterone system
 - Erythropoietin
 - Conversion of vitamin D to usable form

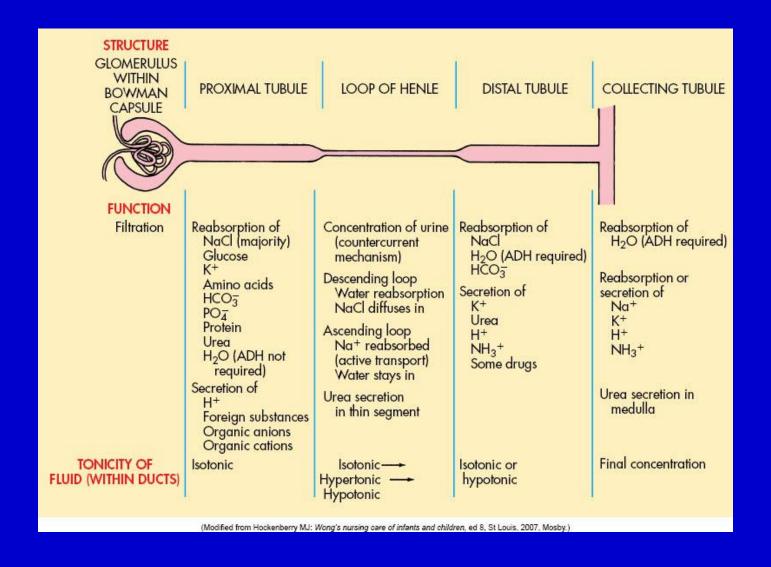
Renal Processes

Filtration

- Movement of protein free plasma across the glomerular membrane (hydrostatic pressure)
- Tubular reabsorption
 - Movement of fluid/solutes from tubular lumen to the peritubular capillaries
- Tubular secretion
 - Transfer of substances from the peritubular capillaries to the tubular lumen
- Excretion
 - Elimination of fluids/substances in the final urine


Tubular Transport

- Active transport of fluids and substances
 - Reabsorption: normally 99% of the glomerular filtrate is reabsorbed!
 - Solutes are reabsorbed by both active and passive processes
 - Small proteins and peptides reabsorbed by pinocytosis
 - Tubular secretion of H+, K+, NH4+, creatinine, and certain drugs
 - Tubular secretion: (1) helps control blood pH; (2) helps eliminates wastes
- Urea: major constituent of urine, along with water
 - > 50% of urea is reabsorbed, 50% excreted in the urine
 - Provides osmotic gradient


Transport Mechanisms

- Primary active transport
 - Requires ATP production; e.g., Na/K pump
- Secondary active transport
 - Driven by the ion's electrochemical gradient
- Transport maximum
 - Upper limit on how many molecules of a substance can be transported at any given period
- Obligatory water reabsorption
 - Occurs in the proximal convoluted tubule; in response to movement of solute
- Facultative water reabsorption
 - In collecting ducts; in response to ADH

Nephron Function

Nephron Function

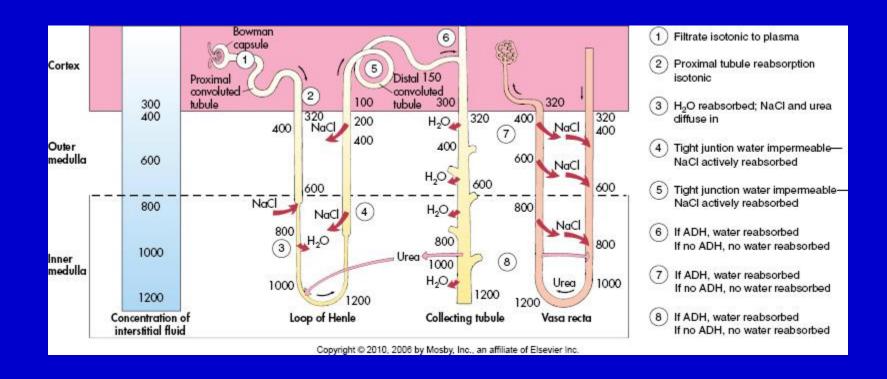
Renal "Clearance"

 The ability of the kidneys to filter a substance and excrete it in the urine is a reflection of the GFR, tubular secretion, and tubular reabsorption (thus also RBF and functioning of nephrons)

- Renin-angiotensin-aldosterone system
- Antidiuretic hormone
- Atrial natriuretic peptide
- Parathyroid hormone

- Renin-angiotensin-aldosterone system
 - Dec BP and BV → dec stretch in the afferent arterioled → JGA produces renin → renin stimulates production of angiotensin I from angiotensinogen → angiotensin I converted to angiotensin II in the lungs by ACE → angiotensin II (1) dec GFR by vasoconstriction; (2) reabsorp Na, CI, H20 in PCT; (3) stimulates production of aldosterone from adrenal cortex which inc. reabsorption of Na and CI and secrete more K

- Antidiuretic hormone
 - Secreted by posterior pituitary gland
 - Regulates facultative water reabsorption by inc permeability of principal cells in the DCT
 - ▶ Inc osmolality of plasma → osmoreceptors in hypothalamus stimulate secretion of ADH → inc insertion of aquaporin- 2 in principal cells → inc permeability to water → facultative water reabsorption dec osmolality


- Atrial natriuretic peptide
 - Large inc in BV → inc stretching of atria → release of ANP → (1) inhibit reabsorption of Na and water in PCT; (2) inhibit secretion of aldosterone and ADH

- Parathyroid hormone
 - Dec Ca2+ in blood → stimulates PTH glands to release PTH → (1) stimulates DCT to reabsorb more Ca2+ into the blood; (2) inhibits HPO4^2reabsorption in the PCT

Concentration and Dilution of Urine

- Countercurrent exchange system
 - Contributes to production of concentrated urine
 - Fluid flows in opposite direction through parallel tubes
 - Fluid moves up and down the parallel limbs of the loop of Henle
 - The longer the loop, the greater the concentration gradient

Countercurrent Exchange System

Concentration and Dilution of Urine

- Urea
- Catecholamines
- Antidiuretic hormone (ADH)
- Urodilantin
- Natriuretic peptide
- Diuretics

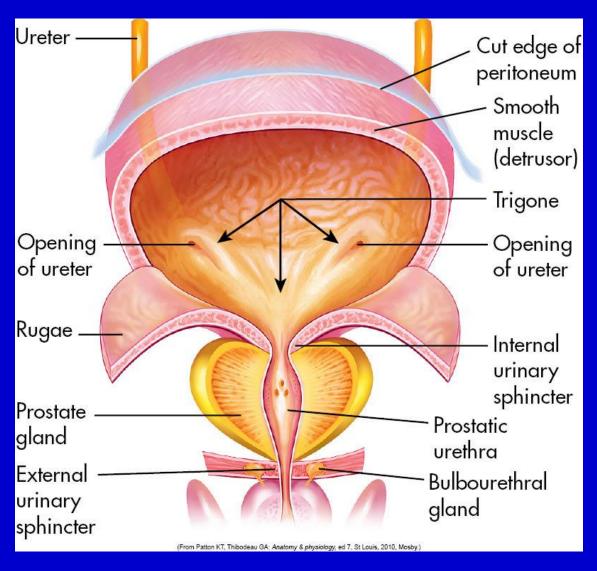
Renal Hormones

- Vitamin D
- Erythropoietin

Ureters

- > 30 cm long
- Long, intertwining muscle bundles
- Pass obliquely though posterior aspect of bladder
- Peristaltic activity
- Micturition compresses the lower end of the ureter to avoid urine reflux

Structures of the Urologic System


Bladder

- Detrusor muscle- smooth muscle fibers
- Transitional epithelium- allows for expansion of the urinary bladder
- Trigone- floor of the urinary bladder
- Micturition reflex
 - Involuntary and voluntary muscle contractions; stretching of the bladder sends impulses to S2-S3 (micturition center) to trigger micturition reflex
 - Nerve impulses causes contraction of detrusor and relaxation of internal urethral sphincter

Urethra

- Internal and external sphincters
- > 3 to 4 cm in females
- > 18 to 20 cm in males

Bladder and Urethra

Tests of Renal Function

- Clearance and glomerular filtration rate
 - > Inulin
 - Creatinine
- Clearance and renal blood flow
- Blood tests
 - Plasma creatinine concentration
 - Plasma cystatin C concentration
 - Blood urea nitrogen (BUN)

Tests of Renal Function

- Urinalysis
 - > Urine color
 - Urine pH
 - Specific gravity
 - Urine sediment
 - RBCs
 - Casts
 - Crystals
 - WBCs

Tests of Renal Function

- Urinalysis
 - Reagent strips (dipsticks)
 - Glucose
 - Bilirubin
 - Urobilinogen
 - Leukocyte esterase
 - Nitrates
 - Ketones
 - Proteins
 - RBCs, hemoglobin, and myoglobin

Aging and Renal Function

- Decrease in kidney size
- Decrease in renal blood flow and GFR
- Number of nephrons decrease due to renal vascular and perfusion changes
- Glomerular capillaries atrophy
- Tubular transport response decreases
- Increased bladder symptoms
 - Urgency, frequency, and nocturia