Outcome (dependent variable): Cured (cured [1] or not cured [0])
Predictor (independent variable): Intervention (intervention [1] or no treatment [0])

Variables in the Equation

a. Variable(s) entered on step 1: Intervention.

The odds of a patient being cured given that they DID NOT received treatment

$$
\begin{aligned}
& P(\text { cured })=\frac{1}{1+e^{-}\left(b_{o}+b_{1} X_{1}\right)} \\
& P(\text { not cured })=\frac{1}{1+e^{-}[-0.288(1.299 \times 0)} \\
& =0.428 \\
& P(\text { not cured })=1-P(\text { cured }) \\
& =1-0.428 \\
& =0.572 \\
& \text { odds }=\frac{0.428}{0.672} \\
& =0.748
\end{aligned}
$$

The odds of a patient being cured given that they received treatment

$$
\begin{aligned}
& P(\text { cured })=\frac{1}{1+e^{-}\left(b_{o}+b_{1} X_{1}\right)} \\
& P(\text { not cured })=\frac{1}{1+e^{-}[-0.288(1.299 \times 1)} \\
& =0.719 \\
& P(\text { not cured })=1-P(\text { cured }) \\
& =1-0.719 \\
& =0.281 \\
& \text { odds }=\frac{0.719}{0.281} \\
& =2.559
\end{aligned}
$$

Proportionate change in odds or odds ratio
\triangle odds $=\frac{\text { odds after a unit change in the predictor }}{\text { original odds }}$
$=\frac{2.56}{0.75}$
$\operatorname{Exp}(B)=3.41$

