Fluids and Electrolytes, Acids and Bases

Mosby items and derived items © 2010, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Distribution of Body Fluids

Total body water (TBW)

- Intracellular fluid
- Extracellular fluid
 - Interstitial fluid
 - Intravascular fluid
 - Lymph, synovial, intestinal, biliary, hepatic, pancreatic, CSF, sweat, urine, pleural, peritoneal, pericardial, and intraocular fluids

Water Movement Between the ICF and ECF

- Osmolality
- Osmotic forces
- Aquaporins
- Starling hypothesis
 - Net filtration = forces favoring filtration forces opposing filtration
 - > Hydrostatic pressure in the capillary
 - > Hydrostatic pressure in the insterstitium
 - > Oncotic pressure in the capillary
 - > Oncotic pressure in the interstitium

Water Movement Between the ICF and ECF

Copyright © 2010, 2008 by Mosby, Inc., an affiliate of Elsevier Inc.

Mosby items and derived items © 2010, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Net Filtration

- Forces favoring filtration
 - Capillary hydrostatic pressure (blood pressure)
 - Interstitial oncotic pressure (water-pulling)
- Forces favoring reabsorption
 - Plasma oncotic pressure (water-pulling)
 - Interstitial hydrostatic pressure

Osmotic Equilibrium

Mosby items and derived items © 2010, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Water Balance

Thirst perception
Osmolality receptors
Hyperosmolality
Baroreceptors stimulated
Plasma volume depletion
ADH secretion

Na⁺ and Cl⁻ Balance

Sodium

- Primary ECF cation
- Regulates osmotic forces
- Roles
 - Neuromuscular irritability, acid-base balance, and cellular reactions
- Chloride
 - Primary ECF anion
 - Provides electroneutrality

Na⁺ and Cl⁻ Balance

Renin-angiotensin-aldosterone system
Aldosterone
Natriuretic peptides
Atrial natriuretic peptide

Potassium

- Major intracellular cation
- Concentration maintained by the Na⁺,K⁺ pump
- Regulates intracellular electrical neutrality in relation to Na⁺ and H⁺
- Essential for transmission and conduction of nerve impulses, normal cardiac rhythms, and skeletal and smooth muscle contraction

Potassium Levels

Changes in pH affect K⁺ balance

Hydrogen ions accumulate in the ICF during states of acidosis. K⁺ shifts out to maintain a balance of cations across the membrane.

 Aldosterone, insulin, and catecholamines influence serum potassium levels

Calcium

- Most calcium is located in the bone as hydroxyapatite
- Necessary for structure of bones and teeth, blood clotting, hormone secretion, and cell receptor function

Phosphate

- Like calcium, most phosphate (85%) is also located in the bone
- Necessary for high-energy bonds located in creatine phosphate and ATP and acts as an anion buffer
- Calcium and phosphate concentrations are rigidly controlled
 - > $Ca^{++} \times HPO_4^{--} = K^+$ (constant)

If concentration of one increases, that of the other decreases

Calcium and Phosphate

Regulated by three hormones

- Parathyroid hormone (PTH)
 - Increases plasma calcium levels via bone reabsorption
- Vitamin D
 - Fat-soluble steroid; increases calcium absorption from the GI tract
- Calcitonin
 - Decreases plasma calcium levels

Magnesium

- Intracellular cation
- Plasma concentration is 1.8 to 2.4 mEq/L
- Acts as a co-factor in protein and nucleic acid synthesis reactions
- Required for ATPase activity
- Decreases acetylcholine release at the neuromuscular junction

pH: What Is It?

Negative logarithm of the H⁺ concentration

 Each number represents a factor of 10. If a solution moves from a pH of 7 to a pH of 6, the H⁺ ions have increased 10-fold.

Mosby items and derived items © 2010, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

рΗ

- Inverse logarithm of the H⁺ concentration
- H⁺ high in number, pH is low (acidic)
- H⁺ low in number, pH is high (alkaline)
- Ranges from 0 to 14
- Each number represents a factor of 10.
 - If a solution moves from a pH of 6 to a pH of 5, the H⁺ has increased 10 times

- Acids are formed as end products of protein, carbohydrate, and fat metabolism
- To maintain the body's normal pH (7.35-7.45) the H⁺ must be neutralized or excreted
- Bones, lungs, and kidneys are major organs involved in regulation of acid-base balance

рΗ

Body acids exist in two forms

- Volatile
 - H₂CO₃ (can be eliminated as CO₂ gas)
- Nonvolatile
 - Sulfuric, phosphoric, and other organic acids
 - Eliminated by the renal tubules with the regulation of HCO₃⁻

Buffering Systems

- Buffer systems exist as buffer pairs
 - Associate and dissociate very quickly (instantaneous)
 - Buffer changes occur in response to changes in acid-base status

Buffering Systems

- A buffer is a chemical that can bind excessive H⁺ or OH⁻ without a significant change in pH
- A buffering pair consists of a weak acid and its conjugate base
- The most important plasma buffering systems are the carbonic acid–bicarbonate system and hemoglobin

Carbonic Acid–Bicarbonate Pair

- Operates in the lung and the kidney
- HCO3- is synthesized and reabsorb by kidneys
- If there is excess H+, HCO3- can function as weak base; if there is shortage of H+, H2CO3 can act as weak acid
- H2CO3 can dissociate into H2O and CO2 and CO2 exhaled in lungs

Carbonic Acid–Bicarbonate Pair

- If amount of bicarbonate decreases, the pH decreases, causing a state of acidosis
- The pH can be returned to normal if the amount of carbonic acid also decreases
 This type of pH adjustment is called compensation
- The respiratory system compensates by increasing or decreasing ventilation
- The renal system compensates by producing acidic or alkaline urine

Other Buffering Systems

- Protein buffering
 - Proteins have negative charges, so they can serve as buffers for H⁺
 - Albumin is a good buffer
 - Free carboxyl (-COOH) can act as acid if H+ decreases
 - Free amino group (-NH2) can act as base when H+ increases
 - Hgb is also a buffer
 - CO2 combines with H2O → H2CO3 → H+ + HCO3-

Exhalation of CO2

- Increase in CO2→ dec pH
- Decrease in CO2 \rightarrow Inc pH
- Changes in rate and depth of breathing can alter the pH of body fluids within a couple of minutes
- pH of body fluids and rate and depth of breathing interact thru negative feedback
- Dec blood pH → detected by chemoreceptors in medulla oblongata, aorta and carotid arteries → stimulate inspiratory area in the medulla oblongata → diaphragm and respiratory muscles contract more forcefully and frequently to inc exhalation of CO2

Kidney excretion of H+

- Kidneys can excrete excess H+ in response to increase metabolic reactions resulting to inc production of nonvolatile acids
- Intercalated cells in the collecting duct has proton pumps that secrete H+ into the tubular fluid
- HCO3- is also reabsorbed in the peritubular capillaries