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Risk assessment is an essential component of genetic
counseling and testing, and Bayesian analysis plays a
central role in genetic risk assessment. Bayesian anal-
ysis allows calculation of the probability of a partic-
ular hypothesis, either disease or carrier status,
based on family information and/or genetic test re-
sults. Genetic risk should be assessed as accurately as
possible for family decision making. Additional infor-
mation, from the pedigree and/or from genetic test-
ing, can often dramatically improve the accuracy of
genetic risk assessment. We illustrate herein the ap-
plication of Bayes’ theorem and describe important
basic principles in genetic risk assessment. (J Mol
Diagn 2004, 6:1–9)

The purpose of this article is to introduce basic and
general principles of Bayesian analysis and genetic risk
assessment for molecular pathologists who are involved
in genetic testing. For further reading and for specific
examples of risk calculations for autosomal recessive,
autosomal dominant, and X-linked disorders, we would
refer to “Introduction to Risk Calculation in Genetic Coun-
seling” by Young1 and “The Calculation of Genetic Risks”
by Bridge,2 both of which illustrate a variety of worked
examples with in-depth discussions. We have illustrated
detailed methods for systematic genetic risk calculations
for spinal muscular atrophy (SMA) in a variety of clinical
settings.3 More advanced examples can also be found in
“Bayesian risk assessment for autosomal recessive dis-
eases: fetal echogenic bowel and one or no detectable
CFTR mutation”4 in which we delineate how to incorpo-
rate into risk calculations information such as the pres-
ence of an independent risk factor from genetic test
results, genetic test results on either or both of the par-

ents, the ethnic background of each parent, the overall
mutation detection rate for each parent’s ethnicity, and
the frequency of a mutation, if detected, among all dis-
ease alleles for a particular ethnicity.

Section 1: Introduction to Bayesian Analysis

Reverend Thomas Bayes first described the theorem
named after him in an essay on “the doctrine of chances,”
published posthumously in 1763, and republished in
1958.5 Analyses based on Bayes’ theorem are routinely
applied to calculate probabilities in a wide variety of
circumstances, not limited to medicine or genetics. In
genetic testing, Bayesian analysis is commonly used to
calculate genetic risks in complex pedigrees, and to
calculate the probability of having or lacking a disease-
causing mutation after a negative test result is obtained.
Here, we introduce Bayesian analysis with two simple,
concrete examples. In subsequent sections, we will dis-
cuss the general principles illustrated by these examples
and apply these principles to more complex scenarios.

Bayesian Analysis Using Pedigree Information

Consider the pedigree shown in Figure 1A, in which the
two brothers of the consultand (the consultand is indi-
cated by the arrow) have Kennedy disease [X-linked
spinal and bulbar muscular atrophy, On-line Mendelian
Inheritance in Man (OMIM) No. 300377], which is caused
by a CAG trinucleotide expansion in the androgen recep-
tor (AR) gene (OMIM No. 310200). Because both of the
consultand’s brothers are affected, we assume that the
consultand’s mother is an obligate carrier of a disease
allele. Before learning that the three consultand’s sons
are unaffected, we would say that the probability or risk of
her being a carrier like her mother is 1/2. This is because
there is a 1/2 chance that she will inherit the normal X
chromosome from her mother and a 1/2 chance that she
will inherit the X chromosome with the disease allele. If we
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now take into account the fact that she has three unaf-
fected sons, how does the consultand’s carrier risk
change?

Bayesian analysis starts with mutually exclusive hy-
potheses, usually two (but sometimes three or more). In
this example, the first hypothesis is that the consultand is
a carrier and the second hypothesis is that she is a
non-carrier. We generally set up our Bayesian analyses in
the form of a table, as shown in Figure 1B, with a separate
column for each hypothesis. The first row of a Bayesian
analysis table contains what is referred to as the “prior”
probability for each hypothesis. In this example, the prior
probabilities are the probability that she is a carrier (1/2),
and the probability that she is a non-carrier (also 1/2),
prior to taking into account the subsequent information
that she has three unaffected sons.

The second row of a Bayesian analysis table contains
what is referred to as the “conditional” probability for
each hypothesis. To determine the conditional probability
for each hypothesis, we ask the following question: what

is the probability that the subsequent information would
occur if we assume that that hypothesis is true? In this
example, the subsequent information is that the con-
sultand has three unaffected sons. Thus, the conditional
probabilities are the probability that the consultand would
have three unaffected sons under the assumption (or
“condition”) that she is a carrier, and the probability that
she would have three unaffected sons under the assump-
tion (or “condition”) that she is a non-carrier. If we assume
that she is a carrier, the probability that she would have
three unaffected sons is 1/2 � 1/2 � 1/2 � 1/8. This is
because she would have to have passed the normal X
chromosome three times in succession, each time with a
probability of 1/2. If we assume that she is a non-carrier,
the probability that she would have three unaffected sons
is �1, since only in the event of a rare de novo mutation
would a non-carrier have anything but unaffected sons.
Thus, the conditional probabilities in this example are 1/8
and 1 (Figure 1B).

The next row of a Bayesian analysis table contains
what is referred to as the “joint” probability for each
hypothesis. The joint probability for each hypothesis is
simply the product of the prior and conditional probabil-
ities for that hypothesis, ie, the probability of a particular
hypothesis and the subsequent information. For the first
hypothesis in this example, ie, that the consultand is a
carrier, the joint probability is the prior probability that she
is a carrier, times the conditional probability that a carrier
would have three normal sons, or 1/2 � 1/8 � 1/16
(Figure 1B). For the second hypothesis in this example,
ie, that the consultand is a non-carrier, the joint probabil-
ity is the prior probability that she is a non-carrier, times
the conditional probability that a non-carrier would have
three normal sons, or 1/2 � 1 � 1/2 (Figure 1B).

The last row of a Bayesian analysis table contains what
is referred to as the “posterior” probability for each hy-
pothesis. The posterior probability for each hypothesis is
the probability that each hypothesis is true after (or “pos-
terior” to) taking into account both prior and subsequent
information. To calculate the posterior probability for
each hypothesis, one simply divides the joint probability
for that hypothesis by the sum of all of the joint probabil-
ities. In this example, the posterior probability that the
consultand is a carrier is the joint probability for the first
hypothesis (1/16), divided by the sum of the joint proba-
bilities for both hypotheses (1/16 � 1/2 � 9/16), or 1/16 �
9/16 � 1/9. The posterior probability that the consultand
is a non-carrier is the joint probability for the second
hypothesis (1/2 � 8/16), divided by the sum of the joint
probabilities for both hypotheses (1/16 � 1/2 � 9/16), or
8/16 � 9/16 � 8/9. Thus, taking into account the prior
family history, and the subsequent information that she
has three unaffected sons, the probability that the con-
sultand is a carrier is 1/9 (Figure 1B).

We illustrate the preceding example graphically in Fig-
ure 1C. The total area of the figure represents the total
prior probabilities, ie, 1. The right half of the figure rep-
resents the prior probability that the consultand is a car-
rier (ie, 1/2), and the left half represents the prior proba-
bility that the consultand is a non-carrier (also 1/2). Under
the hypothesis that the consultand is a carrier, there are

Figure 1. A: A pedigree of a family with individuals affected with Kennedy
disease (see text). B: The Bayesian analysis for A. C: A schematic represen-
tation of the Bayesian analysis of B. Pedigrees shown in the boxes represent
the third generation of the pedigree in A. Each small box to the right
represents 1/16 of the total area.
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eight possibilities for three sons: all three sons affected,
only the first and second sons affected, only the first and
third sons affected, only the second and third sons af-
fected, only the first son affected, only the second son
affected, only the third son affected, and all three sons
unaffected. The area of the small rectangle that contains
three unshaded squares (for three unaffected sons) com-
prises 1/8 of the right (carrier) half of the figure and
represents the conditional probability of three normal
sons under the hypothesis that the consultand is a car-
rier. The area of this small rectangle is 1/16 of the total
area and therefore also represents the joint probability
that the consultand is a carrier (1/2), and that as a carrier
she would have three normal sons (1/8), or 1/2 � 1/8 �
1/16.

Under the hypothesis that the consultand is a non-
carrier, there is essentially only one possibility for three
sons: all three sons unaffected. The area of the larger
rectangle that contains three unshaded squares (for
three unaffected sons) comprises all of the non-carrier
half of the figure and represents the conditional proba-
bility of three normal sons under the hypothesis that the
consultand is a non-carrier. The area of this larger rect-
angle is 1/2 of the total area and therefore also represents
the joint probability that the consultand is a non-carrier
(1/2), and that as a non-carrier she would have three
normal sons (�1), or 1/2 � 1 � 1/2. The area of the
“L-shaped” box, which is demarcated by a bold line,
comprises the areas of the small rectangle with three
unshaded squares (for three unaffected sons) and the
larger rectangle with three unshaded squares (for three
unaffected sons). The L-shaped box represents the sum
of the joint probabilities, or 9/16 of the total figure.

Because the consultand has three unaffected sons,
the area of the L-shaped box represents the only com-
ponent of the prior probabilities that we must consider to
determine the posterior probability that the consultand is
a carrier. For example, taking into account that all three of
the consultand’s sons are unaffected, Bayesian analysis
allows us to exclude 7/16 of the prior probabilities, those
that include one or more affected sons, from consider-
ation. (Note that this explains why the joint probabilities
sum to less than one.) The posterior probability that the
consultand is a carrier is therefore the area of the small
rectangle with three unshaded squares (for three unaf-
fected sons) divided by the area of the entire L-shaped
box, which represents the only probabilities relevant to
the consultand’s risk, or 1/16 � 9/16 � 1/9. Likewise, the
posterior probability that the consultand is a non-carrier is
the area of the larger rectangle with three unshaded
squares (for three unaffected sons) divided by the area of
the entire L-shaped box, or 8/16 � 9/16 � 8/9.

Bayesian Analysis Using Genetic Test Results

In the first example above, we used information from the
pedigree to modify the carrier risk. In the second exam-
ple, we use information from a test result to modify the
prior risk. Consider the pedigree shown in Figure 2A, in
which the consultand is pregnant with her first child and

has a family history of cystic fibrosis (CF). CF is caused
by mutations in the cystic fibrosis transmembrane con-
ductance regulator (CFTR) gene [OMIM Nos. 602421;
219700 (CF)]. The consultand is an unaffected European
Caucasian and her brother died years earlier of compli-
cations of CF. She undergoes carrier testing for the 25
mutations recommended by the American College of
Medical Genetics (ACMG) CF screening guidelines,6,7

which detects 90% of disease alleles in European Cau-
casians. She tests negative for all 25 mutations. What is
her carrier risk?

As in the first example, the two hypotheses in the
Bayesian analysis are that the consultand is a carrier and
that she is a non-carrier. The prior probability that she is

Figure 2. A: A pedigree of a family with an individual affected with CF (see
text). B: Possible genotypes of the sibling of the affected before genetic
testing. The crossed box is excluded based on the fact that the sibling is
unaffected. Abbreviations: M, mutant; W, wild-type. C: The Bayesian analysis
for A. D: A schematic representation of the Bayesian analysis of C (see text).
Note that the areas of the boxes are not proportional to the actual proba-
bilities.
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a carrier is 2/3, and the prior probability that she is a
non-carrier is 1/3 (Figure 2B). (Because the consultand is
unaffected, she could not have inherited disease alleles
from both parents. Three equal possibilities remain: she
could have inherited a disease allele from her father and
a normal allele from her mother, she could have inherited
a disease allele from her mother and a normal allele from
her father, or she could have inherited a normal allele
from each parent. In 2/3 of these scenarios, she would be
a carrier; see Figure 2B).

As in the first example, to determine the conditional
probability for each hypothesis, we ask the following
question: what is the probability that the subsequent
information would occur if we assume that that hypothe-
sis is true? In this example, the subsequent information is
that the consultand tests negative for all 25 mutations in
the testing panel. Thus, the conditional probabilities are
the probability that the consultand would test negative
under the assumption (or “condition”) that she is a carrier,
and the probability that she would test negative under the
assumption (or “condition”) that she is a non-carrier. If we
assume that she is a carrier, the probability that she
would test negative is 1/10. This is because the test
detects 90% of European Caucasian carriers. If we as-
sume that she is a non-carrier, the probability that she
would test negative is �1. Thus, the conditional proba-
bilities in this example are 1/10 and 1 (Figure 2C).

Again, the joint probability for each hypothesis is sim-
ply the product of the prior and conditional probabilities
for that hypothesis. For the first hypothesis in this exam-
ple, ie, that the consultand is a carrier, the joint probability
is the prior probability that she is a carrier (2/3), times the
conditional probability that a carrier of European Cauca-
sian ancestry would test negative (1/10), or 2/3 � 1/10 �
1/15 (Figure 2C). For the second hypothesis in this ex-
ample, ie, that the consultand is a non-carrier, the joint
probability is the prior probability that she is a non-carrier
(1/3), times the conditional probability that a non-carrier
would test negative, (1) or 1/3 � 1 � 1/3 (Figure 2C).
Again, to calculate the posterior probability for each hy-
pothesis, one simply divides the joint probability for that
hypothesis by the sum of all of the joint probabilities. In
this example, the posterior probability that the consultand
is a carrier is the joint probability for the first hypothesis
(1/15), divided by the sum of the joint probabilities for
both hypotheses (1/15 � 1/3 � 2/5), or 1/15 � 2/5 � 1/6.
The posterior probability that the consultand is a non-
carrier is the joint probability for the second hypothesis
(1/3), divided by the sum of the joint probabilities for both
hypotheses (2/5), or 5/6.

We illustrate the preceding example graphically in Fig-
ure 2D. The total area of the figure represents the total
prior probabilities. The right 2/3 of the figure represents
the prior probability that the consultand is a carrier, and
the left 1/3 represents the prior probability that the con-
sultand is a non-carrier. Under the hypothesis that the
consultand is a carrier, there are two possibilities for the
test result: positive or negative. The area of the small
rectangle on the lower right comprises 1/10 of the carrier
2/3 of the figure and represents the conditional probabil-
ity of a normal test result under the hypothesis that the

consultand is a carrier. The area of this small rectangle is
1/10 � 2/3 � 1/15 of the total area and therefore also
represents the joint probability that the consultand is a
carrier (2/3), and that as a European-Caucasian carrier
she would test negative for all 25 mutations (1/10), or
2/3 � 1/10 � 1/15.

Under the hypothesis that the consultand is a non-
carrier, there is essentially only one possibility for the test
result, which is negative. The area of the rectangle that
comprises all of the non-carrier 1/3 of the figure repre-
sents the conditional probability of a negative test result
under the hypothesis that the consultand is a non-carrier.
The area of this rectangle is 1/3 of the total area and
therefore also represents the joint probability that the
consultand is a non-carrier (1/3), and that as a non-carrier
she would test negative (�1), or 1/3 � 1 � 1/3. The area
of the “L-shaped” box, which is demarcated by a bold
line, represents the sum of the joint probabilities, or 2/5
(� 1/3 � 1/15) of the total area of the boxes.

Because the consultand tested negative, the area of
the L-shaped box represents the only component of the
prior probabilities that we must consider to determine the
posterior probability that the consultand is a carrier. For
example, taking into account that she tested negative,
Bayesian analysis allows us to exclude 3/5 of the prior
probability, that portion comprising a positive test result,
from consideration. (Note again that this explains why the
joint probabilities sum to less than one.) The posterior
probability that the consultand is a carrier is therefore the
area of the small rectangle at the lower right divided by
the area of the L-shaped box, which represents the only
probabilities relevant to the consultand’s risk, or 1/15 �
2/5 � 1/6. Likewise, the posterior probability that the
consultand is a non-carrier is the area of the larger rect-
angle on the left divided by the area of the L-shaped box,
or 1/3 � 2/5 � 5/6.

Note that in Bayesian analysis, if one can determine
the correct prior and conditional probabilities, all of the
rest is simple calculation. We recommend setting up a
spreadsheet with four rows (labeled “prior probability,”
“conditional probability,” “joint probability,” and “poste-
rior probability”) and two columns (labeled “carrier” and
“non-carrier”) to simplify calculations of the type de-
scribed in the two examples above. Note also that the
prior and conditional probabilities often depend on eth-
nicity. For example, suppose in the second example that
the consultand’s husband is Ashkenazi Jewish, that he
has no family history of CF, and that he tests negative for
all 25 mutations in the panel. What is his carrier risk?

The carrier risk in Ashkenazi Jewish populations, and
therefore the husband’s prior carrier risk in the absence
of a family history, is approximately 1/25. Thus his prior
probability of being a non-carrier is 24/25. The ACMG
screening guidelines panel of 25 mutations detects 97%
of CF mutations in Ashkenazi Jewish populations, so the
conditional probability of a negative test, under the hy-
pothesis that he is a carrier, is 3/100. Under the hypoth-
esis that he is a non-carrier, the conditional probability of
a negative test is �1. (This is generally the case in
genetic testing, since non-carriers by definition lack mu-
tations in the disease gene in question and hence, unless
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there are technical problems, should essentially always
test negative.) The Bayesian analysis table for this exam-
ple is shown in Figure 3. The joint probabilities are simply
the products of the prior and conditional probabilities,
and the posterior probabilities derive from each joint
probability divided by the sum of the joint probabilities.
The husband’s posterior carrier risk is 1/801.

What is the risk that the fetus is affected with CF?
Before testing, the risk was the prior probability that the
mother was a carrier (2/3), times the prior probability that
the father was a carrier (1/25), times the probability that
two carriers would both pass a disease allele (1/4), or
2/3 � 1/25 � 1/4 � 1/150. After testing, the risk is the
posterior probability that the mother is a carrier (1/6),
times that posterior probability that the father is a carrier
(1/801), times the probability that two carriers would both
pass a disease allele (1/4), or 1/6 � 1/801 � 1/4 �
�1/19,000.

Bayesian Analysis Using Test Results Other
than Genetic Test Results

In the third example, we use information from a test result
other than a genetic test result to modify the prior risk.
The principle is the same as in cases where genetic test
results are available. The conditional probabilities de-
pend on the sensitivity and specificity of the test, whether
genetic or non-genetic (eg, biochemical). Consider the
pedigree shown in Figure 4A, in which the maternal uncle
(I-2) and brother (II-1) of the consultand (II-2) were af-
fected with Duchenne muscular dystrophy (DMD), a se-
vere X-linked recessive disease caused by mutations in
the DMD gene (OMIM Nos. 300377; 310200). With an
affected brother and son, the consultand’s mother (I-1) is
essentially an obligate carrier. In addition, I-1 has an

elevated level of creatine phosphokinase (CPK) in her
serum, which occurs in 67% of DMD carrier women.2

Hence, the sensitivity of the serum CPK test for carrier
status in women is 67%. Since 5% of non-carrier women
have an abnormal serum CPK,2 the specificity of the
serum CPK test for carrier status in women is 95%.

Before testing, the carrier risk for II-2 is 50%. If her
serum CPK is within normal limits, what is the posterior
probability that she is a carrier? The Bayesian analysis for
this case is shown in Figure 4B. Because the sensitivity of
the serum CPK test for carrier status is 67%, the condi-
tional probability that the consultand would test negative
under the assumption that she is a carrier is 33%. Be-
cause the specificity of the serum CPK test for carrier
status is 95%, the conditional probability that the con-
sultand would test negative under the assumption that
she is a non-carrier is 95%. (This contrasts with an es-
sentially 100% specificity in genetic testing; ie, individu-
als without mutations in a disease gene generally do not
test positive. The relationship between conditional prob-
abilities, and the sensitivity and specificity of laboratory
tests, is discussed further in “Bayesian Analysis, Contin-
gency Tables, and Odds Ratios” below.)

Again, the joint probability for each hypothesis is the
product of the prior and conditional probabilities for that
hypothesis, and the posterior probability for each hypoth-
esis is the joint probability for that hypothesis divided by
the sum of all of the joint probabilities. In this example, the
posterior probability that the consultand is a carrier is the
joint probability for the first hypothesis (0.165), divided by
the sum of the joint probabilities for both hypotheses
(0.165 � 0.475 � 0.640), or 0.165 � 0.640 � �0.26.
Hence if the consultand had a son, his chance of being
affected with DMD would be �0.13.

Bayesian Analysis Generalized

A generalized Bayesian analysis is shown in Figure 5A.
The prior probability of a particular hypothesis is desig-
nated as �, and the prior probability of an alternative
hypothesis is designated as (1 - �). The probability that
specific subsequent information would occur if we as-
sume that the particular hypothesis is true (ie, the condi-
tional probability for the particular hypothesis), is desig-
nated as �. The probability that specific subsequent
information would occur if we assume that the alternative
hypothesis is true (ie, the conditional probability for the
alternative hypothesis), is designated as �. The calcula-
tions of the joint and posterior probabilities for each hy-
pothesis are shown in Figure 5A.

The generalized Bayesian analysis of Figure 5A is
illustrated graphically in Figure 5B. The total area of the
figure represents the total prior probabilities, ie, 1. The left
side of the figure represents the particular hypothesis,
and the right side of the figure represents the alternative
hypothesis. The stippled box in the lower left represents
the probability that specific subsequent information
would occur if we assume that the particular hypothesis is
true (ie, the conditional probability for the particular hy-
pothesis), or �. The cross-hatched box in the lower right

Figure 3. Bayesian analysis for an Ashkenazi Jewish individual without a
family history of CF who tests negative for mutations in CFTR.

Figure 4. A: A pedigree of a family with two individuals affected with DMD
(see text). B: The Bayesian analysis for A.

Bayesian Risk Assessment 5
JMD February 2004, Vol. 6, No. 1



represents the probability that specific subsequent infor-
mation would occur if we assume that the alternative
hypothesis is true (ie, the conditional probability for the
alternative hypothesis), or �. The unfilled boxes in the
upper left and upper right represent the probabilities that
specific subsequent information would not occur if we
assume that the particular and alternative hypotheses are
true, respectively.

Bayesian Analysis, Contingency Tables, and
Odds Ratios

The generalized Bayesian analysis in Figure 5A corre-
sponds to a contingency table of population data (Figure
5C), where � indicates the total population in question. In
contrast to the Bayesian analysis table, which deals with
probabilities for a particular individual, the contingency
table is based on population data. Hence “status” re-
places “hypothesis.” “Particular information” may be a
positive or negative test result. When test results replace
“information,” and “Disease” and “No disease” replace
the two “statuses,” Figure 5C becomes Figure 5D, which
is a contingency table used frequently in laboratory med-
icine for the evaluation of test performance. In these four
figures, � equals the prevalence of a particular disease in
the testing population, which is the prior probability in the
generalized Bayesian analysis. (1 - �) and � equal the
sensitivity and specificity of the test, respectively. Ge-
netic risk is most often assessed to determine the prob-
ability of being affected by a disease, or of being a
carrier, after a negative test result. Note that, given a
negative test result, the posterior probability of “Disease”
as the particular hypothesis in the generalized Bayesian
analysis of Figure 5A equals (1 � negative predictive
value) in Figure 5D. In other words, Bayesian analysis
determines the positive or negative predictive value of a
particular test in a particular population.

The close connection between Bayesian analysis and
contingency tables is illustrated further in Figure 5, E to G,
in which we have simplified the nomenclature as follows:
�(1 - �)� � A, ��� � B, (1 - �)(1 - �)� � C, and (1 - �)�� �
D. Odds ratios, or relative conditional probabilities, can
replace conditional probabilities in Bayesian analyses.
An odds ratio implies that a particular condition favors
one or the other hypothesis. A generalized example of
odds ratios in Bayesian analysis is shown in Figure 5H,
using the odds ratios 1 and �/� for the two hypotheses.
Note that the posterior probabilities are exactly the same
as with conventional conditional probabilities (Figure 5A).

Unified Approach to Bayesian Analysis

Hodge presented a unified approach to Bayesian analy-
sis.8 The approach is visual, and easy to understand.

Figure 5. A: Generalized Bayesian analysis. B: A schematic representation of
generalized Bayesian analysis. C: Generalized contingency table. D and E:
Contingency table for “Disease” and “Test results.” F: Bayesian analysis on
negative test result. G: A schematic representation of Bayesian analysis (F). H:
Bayesian analysis using odds ratios as conditional probabilities. Note that results
are exactly the same as with the conventional conditional probabilities (A).
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Essentially, it allows each joint probability to be evaluated
separately by depicting each possible combination of
probabilities (ie, each column at the bottom of Bayesian
analysis tables) as a figure, typically a pedigree. There-
fore, one needs to construct as many figures as the
number of probability permutations. In combination with
the methods illustrated herein, Hodge’s approach may
be useful as an introduction to Bayesian analysis for
those unfamiliar with the subject.

Section 2: Basic Principles in Genetic Risk
Assessment

Genetic risk refers to the probability of carrying a specific
disease-associated mutation, or of being affected with a
specific genetic disorder. Genetic risk can be calculated
using Bayesian analysis without genetic testing, as illus-
trated in the first example of Section 1, in which only
pedigree information was used. Genetic risks from pop-
ulation data are commonly used as prior probabilities in
Bayesian analyses. Genetic test results are usually fac-
tored in to calculate posterior probabilities. Clinical pre-
sentation can also affect genetic risk. In the sections that
follow, we discuss principles of genetic risk assessment
relevant to various genetic-testing scenarios.

Important Points to Consider in Genetic Risk
Assessment

The prior probability of carrying a particular mutation or
mutations often differs considerably among populations,
among families, and even among individuals within the
same family. The disease-allele distribution of the CFTR
gene, for example, varies greatly among different ethnic
groups.9 Because posterior probabilities rest in part on
prior probabilities, genetic risk assessments must inte-
grate all relevant and available information, including
ethnicity, family history, clinical presentations, genetic
testing results for other family members, and previous
genetic testing results for the consultand. The sensitivity
of a genetic test for a particular individual, which deter-
mines the conditional probability of a negative result un-
der the hypothesis of carrier or disease status, is fre-
quently altered by additional information. For example, if
a non-Hispanic Caucasian consultand, whose sibling is
affected with cystic fibrosis, is tested only for the �F508
mutation in CFTR the sensitivity of the test is approxi-
mately 70%.5,6 Hence the conditional probability of a
negative result under the hypothesis of carrier status is
approximately 30%. However, suppose that the affected
sibling is found to be homozygous for the �F508 muta-
tion. Assuming the parents are unaffected, the sensitivity
of the test for the consultand increases to essentially
100%. This is because the prior probability of carrying a
CFTR mutation comprises the �F508 mutation only.

A particular genetic risk assessment is a population-
based estimate of probability at a particular point in time,
and is subject to modification. This is because popula-
tion-based data, which determine prior probabilities, and

testing methods, which affect sensitivity and/or specificity
and thereby determine conditional probabilities, are con-
stantly being updated. In addition, families expand, add-
ing new offspring, and adding new clinical and genetic-
testing information relevant to genetic risk assessment.
Genetic testing of additional family members, in particu-
lar, can dramatically affect genetic risk assessments.3

Analytical or interpretive laboratory errors, which are
hopefully rare but may still be unavoidable, obviously
affect risk assessments directly. Laboratory errors also
affect risk assessments indirectly, by altering estimates of
allele distributions, carrier frequencies, etc. Using intu-
ition to estimate genetic risk, even after obtaining specific
information from pedigrees and/or genetic testing, has
been shown to be misleading.10 Hence, genetic risk
should be quantified systematically. Other pitfalls in ge-
netic testing have been discussed in depth elsewhere.11

Single-Gene (Mendelian) Disorders versus
Polygenic or Multifactorial Disorders

When several genes (and/or environmental factors) are
involved in the pathogenesis of a given disorder (ie, the
disorder is polygenic or multifactorial), risk assessment is
far from straightforward. Examples include multifactorial
disorders such as hypertension, adult-onset diabetes,
and various cancers. Population-based data and infor-
mation on multiple genes are required. Risk assessments
for multifactorial disorders have been described else-
where.1,12–15

The Hardy-Weinberg Principle in Genetic Risk
Assessment

The Hardy-Weinberg principle is often used in genetic
risk assessment. The most common scenario is that of an
individual who marries into a family with a history of an
autosomal recessive disorder. The Hardy-Weinberg prin-
ciple can be used to estimate the probability that this
individual, who lacks a family history of the disorder and
is therefore representative of the general population, is a
carrier. Assuming Hardy-Weinberg equilibrium, and a
disease-allele frequency of q, the carrier frequency of
2(1 � q)q, or approximately 2q if q is sufficiently small,
can be derived from the disease frequency, which is
equal to q2. Thus, if a disease frequency can be deter-
mined from population-based data, a disease-allele fre-
quency and a carrier frequency in that particular popu-
lation can be calculated.

Mendelian Genetics in Genetic Risk Assessment

The basic principle of Mendelian genetics is often used in
genetic risk assessment, particularly where pedigrees
are involved. Simply put, the carrier of a mutation has a
50% probability of passing the mutation to an offspring,
and a 50% probability of having received the mutation
from a particular parent. Based on this principle, one can
estimate the probability of being a carrier by the related-
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ness of a consultand to an affected family member or
obligate carrier. For autosomal recessive diseases, car-
rier risk decreases by half at each step across a pedigree
from the affected family member to the consultand, pro-
vided that the carrier frequency in the general population
is sufficiently small. For X-linked recessive diseases, car-
rier risk decreases by half at each step from one female
member to another female member in the preceding or
successive generation of the pedigree.

If the carrier frequency for an autosomal recessive
disorder is not negligible, however, one must also con-
sider the additional carrier risk conferred by mutant al-
leles different from the mutant alleles present in the index
case.

Recessive disorders quite often require genetic risk
assessment. Recessive disorders are usually associated
with loss-of-function mutations. In addition to being far
more common than gain-of-function mutations, loss-of-
function mutations tend to be far more diverse, making it
nearly impossible to achieve 100% test sensitivity. In the
case of CF, where a single mutation (�F508) accounts for
approximately 70% of all non-Hispanic Caucasian dis-
ease alleles, testing for the next most common two-to-
three dozen mutations still falls far short of achieving
100% sensitivity. The lack of 100% sensitivity underlies the
need for Bayesian analyses of negative carrier-test results.
For example, in recessive diseases, there is almost always
the inherent possibility of missing a disease-associated mu-
tation. In contrast, dominant or semi-dominant disorders are
usually caused by more-specific, gain-of-function muta-
tions, such as the factor V Leiden mutation.

Non-Mendelian Genetics in Genetic Risk
Assessment

Non-Mendelian genetics contribute to genetic risk
through a number of mechanisms, including de novo
(new) mutations and mosaicism. A de novo mutation is a
mutation that is absent from the somatic cells of the
parents, but present in the somatic cells of the offspring.
A de novo mutation may cause a subset of germ cells to
have the mutation, ie, isolated germline mosaicism.
Germline mosaicism may or may not manifest as a de
novo mutation in offspring. The impact of germline mosa-
icism on genetic risk assessment is described else-
where.1,16

Non-Mendelian genetics also impact genetic risk as-
sessment through a number of other mechanisms, in-
cluding genomic instability (anticipation), non-paternity,
imprinting (epigenetics), positional effects of two or more
genes (which can also be viewed as a multifactorial
mechanism), and mitochondrial inheritance. For further
reading, we recommend the books by Peter Bridge2 and
Ian Young.1

Consanguinity

Consanguinity is particularly important to consider in au-
tosomal recessive disorders. Alleles that are identical
because they derive from a single allele present in a

common ancestor are defined as being identical by de-
scent (IBD). Alleles that are the same but that derive from
two different and apparently unrelated sources are de-
fined as being identical by state (IBS). Consanguineous
matings increase the frequency of autozygosity for two
mutant alleles that are IBD.

The coefficient of inbreeding (F) is the probability that
both alleles at a specific locus are IBD in the child of a
consanguineous couple. The coefficient of relationship
(R) is the probability that an individual’s allele at a spe-
cific locus is IBD to an allele at the same locus in his or
her partner due to a consanguineous relationship.
Hence, R � 2F. In general, F � �1/2(n � 1), in which “n” is
the number of steps (generations) from an ancestor down
to the child through one parent and then back up to the
same ancestor via the other parent.17 � indicates the sum
of 1/2(n � 1) for all common ancestors. For example, in a
first-cousin couple, where there are two common ances-
tors, F � 1/2(6 � 1) � 1/2(6 � 1) � 1/16. When the common
ancestor is inbred, the equation F � �1/2(n � 1) (1 � FA)
is used, where FA is the coefficient of inbreeding for the
ancestor.

One of the basic prerequisites for the Hardy-Weinberg
equilibrium is random mating. Consanguinity can be
thought of as a deviation from the assumption of random
mating, leading to over-representation of homozygous
genotypes. For a two-allele system, A and a, with allele
frequencies of p and q, respectively, the distribution of
genotypes in a randomly mating population is p2, 2pq,
and q2 for AA, Aa, and aa, respectively. With consanguin-
ity, genotype frequencies change to p2 � Fpq, 2pq (1 �
F), and q2 � Fpq for AA, Aa, and aa, respectively.2 Thus,
the risk of homozygosity for mutant alleles in a child of a
consanguineous couple, relative to that in a child of a
non-consanguineous couple, is (q2 � Fpq)/q2 � 1 �
Fp/q. For example, in a first-cousin union, the relative risk
of a child being affected with spinal muscular atrophy
(q � 0.01), relative to that of a child in the randomly
mating general population, is approximately 7.2, includ-
ing an approximately 6.2-fold increased risk of being IBD
for disease alleles.

Concluding Remarks

Genetic risk assessment is an integral part of genetic
counseling and testing. Bayesian analysis plays a central
role in genetic risk assessment. Genetic risk should be
assessed as accurately as possible, using all available
information at a particular point in time, from the pedigree
and/or from genetic testing. Although the technologies for
genetic testing will continue to change, genetic risk as-
sessment will remain a fundamental aspect of genetic
testing.
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