Marine Ecosystems

Lydia R. Leonardo, DrPH

Professor Emeritus, UP Manila

Director, UE Office of Research Coordination

Professorial Lecturer, UP Diliman

Special Features of the Marine Ecosystems

Oceans occupy 70% of the earth's surface.

All the oceans are interconnected by currents, dominated by waves, influenced by tides and are saline.

Marine Ecosystems

Those that occur in or near salt water

Found from sandy beach to the deepest parts of the ocean

Make up most of the earth

Types of Marine Ecosystems

Sandy beaches

Rocky shores

Salt marshes

Coral reefs

Mangroves

Deep sea

Hydrothermal vents

Coastal Ecosystems

Coastal Area or Coastal Zone

An extremely dynamic environment where interface between land, water and air is seen

Types of Coastal Environments

Estuarine – where freshwater and sea water meet

Salt marshes in temperate region

Mangroves in the tropics

Intertidal zone

mudflats sandy beaches rocky intertidal Two Important Physical Factors in the Intertidal Zones

Waves

Tides

Wave Exposure

 Energy in waves can influence the particle size
 ability of organisms to remain attached to the substrate

Tidal Exposure

Vertical gradient - higher areas have longer exposure to air than lower areas

Exposure to air can have two negative effects for marine organisms

- Dessication water loss
- Thermal stress temperature very high

Seashores

Alternately exposed and submerged by tides

Seashore regions marked by extreme high water mark and extreme low water mark.

Particle Sizes

scale	(metric)	(approx. inches)	(Wentworth Class)	Other names
-8 <	256 mm <	10.1 in <	Boulder	
-6 to -8	64-256 mm	2.5-10.1 in	Cobble	
−5 to −6	32–64 mm	1.26-2.5 in	Very coarse grave;l	Pebble
-4 to -5	16-32 mm	0.63-1.26 in	Coarse gravel	Pebble
-3 to -4	8–16 mm	0.31-0.63 in	Medium gravel	Pebble
-2 to -3	4–8 mm	0.157-0.31 in	Fine gravel	Pebble
−1 to −2	2–4 mm	0.079-0.157 in	Very fine gravel	Granule
0 to -1	1-2 mm	0.039–0.079 in	Very coarse sand	
1 to 0	½–1 mm	0.020-0.039 in	Coarse sand	
2 to 1	14-1½ mm	0.010-0.020 in	Medium sand	Liv
3 to 2	125–250 <u>μm</u>	0.0049-0.010 in	Fine sand	
4 to 3	62.5–125 μm	0.0025-0.0049 in	Very fine sand	
8 to 4	3.90625- 62.5 μm	0.00015-0.0025 in	Silt	Mud
> 8	< 3.90625 μm	< 0.00015 in	Clay	Mud
> 10	< 1 µm	< 0.000039 in	Colloid	Mud

Wave Energy and Shore Particle Size

Larger particles require more energy to be moved.

Thus, the size of the shore particles is influenced by the energy of the waves striking them.

High energy shores contain larger particles than low energy shores.

Types of Shores According to Size of Particles

Rocky Shore

Boulder Beach

Cobble Beach

Gravel Beach

Sandy Beach

Mud Beach

Marine Life on the Sandy Beach

Sea turtles

Seals, sea lions

Algae

Invertebrates such as crabs, clams, worms, snails, flies

Birds

Rocky Shores

Rocky Shores

May be marked with rock cliffs, small and large boulders, small and large rocks and tide pools.

Tide pools – puddles of water that can contain an array of marine life

Also shows intertidal zone between low and high tide

Littoral Zone

Part of the time covered with water and part of the day exposed to air

Dominated by daily rise and fall of tides

Species living in the littoral zone face the problem of living on both marine and terrestrial habitats

Intertidal Zonation

• Zonation in Rocky Intertidal Shores

Marine Life in Rocky Shores

Marine algae

Lichens

Birds

Invertebrates like crabs, lobsters, starfish, sea urchins, mussels, barnacles, snails, limpets, sea squirts, sea anemones

Fish

Seals, sea lions

Organisms in the Rocky Intertidal Zone

Features of the Rocky Intertidal Zone

Distribution and abundance of organisms determined by abiotic and biotic factors

Shows steep vertical gradients

With variable physical conditions

Mostly sessile or sedentary organisms

Small organisms with high density

- Pools of water may become isolated and hold water for periods ranging from hours to several days
- · When pools isolated
 - Water evaporates
 - Salinity increases
 - Temperature increases
- Pools can fill during rains
 - Salinity decreases
 - Temperatures decrease

Salt Marshes

Provide a buffer between the sea and the mainland

Flooded at high tide and are composed of salt tolerant plants and animals

Important in many ways

- Provide habitat for marine life, birds and migratory birds
- Important nursery areas for fish and invertebrates
- Protect the rest of the coastline by buffering wave action
- Absorb water during high tides and storms

Salt Marsh

Organisms Found in a Salt Marsh

Algae Birds Fish Invertebrates like crustaceans

Salt Marsh
Hummocks, South
Slough National
Estuarine Research
Reserve, Oregon

Photograph by Mark Eberle, August 2000

Coral Reefs

Found in areas penetrated by sunlight and beyond the low water mark

Formed by hermatypic or reef-forming coral species that contain zooxanthellae

Hard and soft corals of many sizes

Various groups of invertebrates

All kinds of fishes including sharks

Also marine vertebrates such as mammals and reptiles

Coral Reef

Marine Organisms Found in Coral Reefs

Invertebrates: hard and soft corals, sponges, anemones, crabs, shrimps, lobsters, bryozoans, polychaetes, starfishes, sea urchins, crinoids, sea cucumbers, nudibranchs, octopus, squids, cuttlefish, gastropods, bivalves

Vertebrates: cartilaginous and bony fishes, sea turtles, sea snakes, marine mammals like seals, dolphins

Mangroves

Marine areas composed of salttolerant plant species

Found generally in warm areas between 32 degrees north latitude and 38 degrees south latitude

Provide shelter for various marine life and important nursery areas for other marine vertebrates

Mangroves

Inhabited by tropical trees and shrubs that can tolerate conditions in the intertidal zone along tropical coastlines

Possess adaptations to allow them to live in periodically flooded regions with high salt content

Approximately 70 species of mangrove plants belonging to 20 different plant families

Environmental Problems Faced by Mangroves

Soil is very fine and waterlogged making it difficult for the root system to support the plant.

Waterlogged condition also makes it difficult for the roots to extract oxygen from the soil.

The intertidal location of the mangroves means high salt concentrations.

Saturated soil lacks oxygen.

Prop Roots

Aerial Roots and Pneumatophores

Marine Organisms in Mangroves

Algae

Invertebrates such as tunicates, sponges, crabs, shrimps, oysters, snails, insects

Fish, sharks

Reptiles such as sea turtles, land turtles, alligators, crocodiles, caymans, snakes, lizards

Birds

Mammals like dolphins, manatees

Importance of Mangrove Ecosystems

Serve as nurseries for many species of marine fishes and invertebrates – juveniles seek shelter among the prop roots until they are large enough to move to the reef.

The mangrove roots protect the shore from the effects of storms and surges and tsunamis — documents are present on parts of Southeast Asia with mangrove forests that were protected from the impact of tsunamis compared with those that were deforested of mangroves.

Mangrove Restoration Thailand

Oceans of the World

Atlantic

Pacific

Indian

Arctic

Southern (Antarctic)

Types of Open Sea Ecosystems

Pelagic

Benthic

Organisms in the Pelagic Ecosystem

Phytoplankton

Zooplankton

Nekton

Phytoplankton

Dominant primary producers in the sea

Don't need well developed supporting structures

Drifting on the surface

Restricted to areas where there is light

Zooplankton

 Graze on phytoplankton (herbivores)

Ex. Copepods, planktonic arthropods, krills (euphausiids)

 Eat herbivorous zooplankton (carnivores)

Ex. Larval forms of invertebrates like ctenophores and chaetognaths

Nekton

 Swimming organisms that can move at will and can swim against the current

Ex. Fishes, marine mammals

- Can be highly predactious like sharks or killer whales
- Or plankton feeders like whale sharks

Organisms in the Benthic Ecosystem

Benthos – organisms that live on or in the bottom of the water

Epifauna or epiflora – on surface of rocks or hard surface

Infauna – within the substrate

Deep Sea

- Parts of the ocean that are over 1,000 meters or 3,281 feet deep
- Deepest parts of the ocean are over 30,000 feet like the trenches

Organisms in the Deep Sea

- Invertebrates such as corals, crabs, worms, jellyfish, squids, octopus
- Fish such as angler fish and sharks
- Deep-diving marine mammals like sperm whales and elephant seals

Hydrothermal Vents

- Located in deep sea
- First hydrothermal vent discovered in 1977
- Scientists noticed a number of organisms living around the vent

Marine Life in Hydrothermal Vent Ecosystem

- Archaea bacteria-like organisms that use chemosynthesis for production where chemicals around the vents are converted into energy. These organisms are the base of the food chain in the hydrothermal vent ecosystem.
- Invertebrates such as tubeworms, limpets, clams, mussels, crabs, shrimps, lobsters, octopuses
- Fishes

Chemosynthesis VS Photosynthesis

Photosynthesis: $6CO_2 + 6H_2O + Light$ $\rightarrow C_6H_{12}O_6 + 6O_2$

Chemosynthesis: $CO_2 + 4H_2S + O_2 \rightarrow$ $CH_2O + 4S + 3H_2O$

Food chain in the Hydrothermal Vent Ecosystem

- Bacteria that oxidize/fixate inorganic material
- Tubeworms (Preyed by Deep Sea Clams and Crabs)

Why
Chemosynthesis
in Hydrothermal
Vent Ecosystem

Certain species have their niches in dark places

Allows diversity in product depending on gases absorbed

Forms the biomolecules essential for organic life

Limited only by application of products and amount of chemoautotrophs

Point where freshwater meets saltwater (ecotone)

Areas between moving and still water

Offer habitat to many different plants and animals

Organisms in estuaries have the ability to survive in both freshwater and saltwater ecosystems.

Estuaries

Freshwater meets Saltwater

Moving water meets still water

Salt Marsh Hummocks, South Slough National Estuarine Research Reserve, Oregon

Estuaries and coastal waters are among the most productive ecosystems on Earth, providing ecological, economic, cultural, and aesthetic benefits and services.

Acknowledgement

Pictures, graphs and diagrams used in this presentation have been adopted from Slideshare.

