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a b s t r a c t

Complexity is an elusive term in ecology that is often used in different ways to describe the state of an
ecosystem. Ecological complexity has been linked to concepts such as ecological integrity, diversity and
resilience and has been put forth as a candidate ecological orientor. In this article, the concept of complex-
eywords:
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omplex systems
cological orientors
ntropy

ity as a system attribute is presented and candidate measures of ecological complexity are reviewed. The
measures are distinguished by their ability to characterize the spatial, temporal, structural or spatiotem-
poral signatures of an ecosystem. Many of these measures have been adapted from disciplines such as
physics and information theory that have a long history of quantifying complexity, however more work
needs to be done to develop techniques adapted to ecological data. It is argued that if appropriate mea-
sures are developed and validated for ecosystems, ecological complexity could become a key ecological

indicator.

© 2010 Elsevier Ltd. All rights reserved.
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he idea that the structure and functioning of ecosystems may be
nderstood according to theories of emergence, self-organization,
etwork theory and non-linear dynamics, borrowed from the phys-

cal sciences (Levin, 1999; Solé and Bascompte, 2006). Modern
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views in ecology present ecosystems as adaptive, dynamic net-
works of interacting components that should be studied in a context
of non-equilibrium dynamics leading to innovation and surprise as
a result of feedbacks and cross-scale interactions (Harris, 2007; Liu
et al., 2007).

It seems natural to assume that if an ecosystem is a complex sys-
tem, then any changes in its state will be reflected in established
measures of the complexity of the system (Parrott, 2005). How to
measure the complexity of a system, however, is an ongoing subject
of debate and remains one of the key challenges in complex sys-
tems research. Ask yourself which ecosystem is more complex: A
healthy, diverse coral reef or a degraded reef dominated by algae?
A second growth temperate coastal forest that was subjected to
5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

Many authors have claimed that an ecosystem is a prototyp-
ical complex system (Levin, 1998). Ecological theory has a long
history of describing ecosystems in terms of material and ener-
getic flows between multiple components in interaction (Odum,
1968; Jørgensen and Müller, 2000), providing a conceptual model
which is very compatible with current conceptual models of com-
plex systems. More recently, ecologists and others have proposed
clear cut harvesting 80 years ago, or an adjacent old growth stand
that has not been disturbed for more than 800 years? Most readers
will have an intuitive answer to this question, classifying different
ecosystems as being more or less complex than others. Yet, how do
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Fig. 1. Complexity versus regularity. Measures of complexity distinguish classes of
structures or dynamics along a gradient of order to disorder. Type 1 measures assign
the highest value to disordered systems, whereas Type 2 measures are convex func-
tions that assign the highest value to systems falling between the two extremes of
order and disorder. Examples of spatial, structural and temporal signatures corre-
070 L. Parrott / Ecological Ind

e measure the complexity of an ecosystem? Can we quantify this
eemingly system-level attribute? And if we could, would it serve
s a useful ecological indicator, informing us about the state of the
ystem?

Here, I argue that while complexity is, in many ways, related to
ther holistic measures of an ecosystems structure and function-
ng, it can be seen as a distinct attribute of a system. As such, it
hould be possible to measure and quantify this attribute, classify-
ng some ecosystems as more or less complex. This paper describes
number of recent techniques that have been developed in fields

uch as physics and information theory and which are now being
sed to characterize the complexity of ecosystems. If successful,
uch measures of complexity may serve as aggregate indicators of
cosystem structure and dynamics.

. Measuring complexity

Ecosystems, like all complex systems, typically display a non-
inear dynamics in space and time that is extremely difficult to
haracterize using standard quantitative methods. The dynam-
cs of a complex system has been said to lie “at the edge of
haos” (Langton, 1992) between the two extremes of order (equiv-
lent to a uniform spatial pattern or temporal equilibrium) and
isorder (equivalent to a random spatial distribution or white
oise), exhibiting a balance between underlying regularity and
omplete unpredictability (chaos). Studies in graph theory show
hat the organizational structure, or interaction network, of the
omponents making up a complex system also has a character-
stic structure that is neither random nor completely ordered
Barabasi, 2009). Recent research has thus focused on developing

ethods to characterize the temporal, spatial or structural signa-
ures of complex systems, classifying the system along a gradient
f order to disorder. Measures of complexity tend to be of two
ypes (Atmanspacher, 2007): Type 1 measures increase linearly
ith increasing disorder in the system, and Type 2 measures are
convex function, attributing their highest values to systems of

ntermediate regularity (Fig. 1).
Whichever type of measure is used, the objective is to differ-

ntiate between so-called simple systems versus those that are
omplex (Grassberger, 1988). Simple ordered systems, for example,
ay have patterns such as periodic cycles that repeat themselves

redictably in time or in space and they may have a highly orga-
ized structure, in which each node in the system has the same
umber of connections, for example. Disordered systems have ran-
om spatial structure, display random dynamics and have a random
rganization of components. Such systems are simple in the sense
hat they can be easily described by a probability distribution func-
ion that can reproduce the main characteristics of the system.

hile early attempts to quantify ecological complexity proposed
easures such as the number of significant axes in a principal com-

onents analysis of a data set (Meyer, 1988), the field has advanced
o a search for more sensitive measures that may serve as ecolog-
cal indicators. In the following section, measures of complexity
hat have, for the most part, been developed in fields such as infor-

ation theory and physics are presented and their applicability to
uantifying ecological complexity is discussed.

. Example measures of ecological complexity

.1. Temporal measures
Temporal measures of complexity can be used to character-
ze time series of different variables describing the dynamics of
system. Since a time series can be viewed as a symbol sequence,

t is a natural candidate for the application of information-based
sponding to each class of system are also shown. Here, we argue that both highly
ordered and highly disordered (random) systems are simple systems and that the
most complex systems are situated in the intermediate zone of regularity.

measures of complexity, most of which have Shannon entropy or
derivatives of Shannon entropy at their root (Kolmogorov, 1965;
Chaitin, 1977; Gell-Mann and Lloyd, 1996; Lloyd, 2001). Such mea-
sures require that the data be categorized into binary or another
fixed number of bins (“symbols”), entailing a loss of information
for continuous valued data. Complexity measures then are based
on the probability (pi) of observing symbol i in the data, as well as
on second order probabilities such as the frequency of observing
symbol i next to symbol j or of observing particular sequences of
symbols of length L in the series (known as L-words). For a binary
symbol string, the number of possible words of length L that can be
made is 2L. The relative frequency of occurrence of each L-word in
the symbol string is designated as (pL,i) (for a random sequence, all
words are equally probable). Both Type 1 and Type 2 complexity
measures exist for symbol sequences. These can be used to classify
and compare time series from different systems along an axis of
order to disorder and have been widely applied to describe symbol
sequences in the information sciences.

Two information-theoretic measures of complexity that have
been applied to ecological time series are the mean information
gain (MIG) (Wackerbauer et al., 1994) and fluctuation complexity
(Bates and Shepard, 1993). MIG measures the amount of new infor-
mation gained by reading an additional symbol in a time series and
is maximal for a random series. MIG is thus a Type 1 measure of
complexity. Fluctuation complexity is a measure that relates to the
degree of structure in the time series and meets the criteria for Type

2 measures.

The mean information gain (HG) is computed as follows:

HG(L) = Hs(L + 1) − Hs(L) (1)
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here Hs is the Shannon entropy of the sequence:

s(L) = −
n∑

i=1

pL,ilog2 pL,i (2)

he fluctuation complexity (CF) is equal to:

F =
n∑

i,j=1

pL,ij

(
log2

pL,i

pL,j

)2

(3)

here pL,ij is the probability of observing word j immediately fol-
owing the word i. The fluctuation complexity thus takes into
onsideration, to some extent, the ordering of, and relationship
etween, words in a sequence.

MIG and CF have been successfully applied to characterize differ-
nt types of ecological time series. Hauhs and Lange (2008) showed
hat these measures can successfully discriminate between the
omplexity of runoff (discharge time series) from predominantly
rban versus forested watersheds and between river systems from
ifferent parts of the globe. Pachepsky et al. (2006) used the same
ethods to characterize water flux time series through different

oil profiles. Meloche (2005) applied these measures to flux tower
ata from the boreal forest and showed their ability to differ-
ntiate between forest stands in different states of development.
hile MIG and fluctuation complexity have the advantage of being

ounded in a clear tradition of information-based measures for
escribing complexity, the drawback of this approach is the loss
f information that occurs in pre-treatment of the series, as well as
he necessity of having fairly long (>1000 measurements) series in
rder to make meaningful conclusions. Future work should involve
he development of new information-based measures adapted to
horter time series and more value classes (as opposed to binary
lassifications).

In addition to the various information-theoretic measures of
omplexity, methods of non-linear time series analysis may be
sed to characterize underlying structure in a data set and can
ive some insight into the nature of the systems temporal dynam-
cs. Ecological data sets, however, have proven to be exceptionally
ifficult to analyze, due in part to the problem of distinguishing
etween noise and non-noise, as well as to the short length of
ost available time series. Efforts to detect chaos in ecological

ata sets by estimating Lyapunov exponents or reconstructing the
nderlying attractor, for example, have not met with incredible suc-
ess (Hastings et al., 1993) although there are some recent, more
romising examples with longer time series (Benincà et al., 2008).
ess conventional methods, however, such as recurrence quantifi-
ation analysis (RQA) may show structure in data that passed all
ther tests for randomness and are applicable to shorter time series
Marwan et al., 2007).

The RQA method is based on the recurrence plot (RP) of a time
eries, Bi(t), with t = 1 . . . n. The first step is to reconstruct the attrac-
or in state space via Taken’s theorem, in which a point vj in the
ttractor ˚ is defined as:

j =
〈

Bi(j), Bi(j + �), Bi(j + 2�), . . . , Bi(j + (ω − 1�))
〉

j = 1 . . . n − (ω − 1)� (4)

here ω is the embedding dimension and � is the delay. The RP is
reated by filling the binary recurrence matrix Ri according to the
ollowing rule:{

1 if d(vx, vy) < ı,

i(x, y) =

0 elsewere.
x, y ∈ ˚, (5)

here d(vx,vy) is the Euclidean distance between two points on the
ttractor in the embedded state space. The threshold value given
y ı represents the threshold distance for which two states are
s 10 (2010) 1069–1076 1071

considered to be on neighboring trajectories (recurrent) in state
space. A multivariate RP can also be calculated, via the dot product
of the RPs for different time series. This allows the identification of
points in state space where the entire system state (as described by
multiple dynamic variables) recurs (Romano et al., 2004).

RQA techniques are based on analysis of patterns in the
recurrence plots, and can quantify the degree of randomness or
determinism in the system dynamics. Measures of determinism in
RQA may perhaps be linked to the complexity of a time series, serv-
ing as Type 1 measures of complexity. RQA has been successfully
applied to characterize time series from many social and biological
systems and recent work (Proulx et al., 2008; Proulx and Parrott,
2009) has demonstrated the potential of RQA to characterize the
dynamics of real and simulated ecological systems.

3.2. Spatial measures

Spatial measures of complexity must be able to characterize
ordered, random and complex two-dimensional patterns. Spatial
measures do not describe the dynamics or function of a system but
rather describe its configuration in space at a particular moment in
time. A few candidate information-based measures have been pro-
posed and tested on spatial ecological data, including the Shannon
entropy and mean information gain. In these cases, the measures
are applied to raster-based data (such as photographs, satellite
imagery or output from spatially explicit models). As for time series,
these measures require preprocessing of the data into a reduced
number of classes and are based on the probabilities (pi) of observ-
ing certain pixel values in the raster. Second order probabilities
such as the frequency that symbol j is in the neighborhood of i (pij)
are also used, as are the probabilities of finding particular spatial
configurations of values (e.g., in a 1 × 3, 1 × 2 or 2 × 2 rectangle).
Proulx and Parrott (2008) presented mean information gain (MIG)
as being a candidate measure of spatial complexity for ecosystems.
They showed that the MIG of photographs taken in the forest under-
story was positively correlated with plant species diversity and was
able to differentiate between different habitat types (Fig. 2).

The fractal dimension is very commonly proposed as a measure
of the spatial complexity of patterns. This measure is applicable to
patterns that are self-similar over at least a certain range of spatial
scales, which is often the case for physical landscape forms such
as mountain ranges, coastlines and river networks (Mandelbrot,
1983; Barnsley, 1993). It has been extensively used at the landscape
scale to describe patterns of land use such as forest fragmenta-
tion as detected via aerial imagery or satellites (Krummel et al.,
1987; Wiens and Milne, 1989). It has also been used to describe
the silhouettes of skylines in photographs of different categories
of landscapes (e.g., urban versus forested) (Hagerhall et al., 2004).
Increasing fractal dimension was shown to be positively correlated
with scene “naturalness” and with human preferences for different
landscape scenes. However, when a spatial pattern is not obviously
self-similar, the application and calculation of the fractal dimen-
sion is problematic. In addition, some authors argue that complex
systems are not necessarily self-similar across scales (Wolpert and
Macready, 2007) and in ecology, the idea that ecosystems may have
several characteristic spatial scales at which different structures
and processes are present is becoming increasingly accepted. For
this reason, the fractal dimension may have limited application as
a measure of spatial complexity in ecology.

Landscape ecologists have devised a suite of metrics intended
to describe patterns present on a landscape mosaic (O’Neill et al.,

1988). Entropy and contagion (dispersion) metrics are good sur-
rogates for Type 1 complexity measures, since they categorize
the uniformity versus randomness of landscape patterns. Many
other metrics are object-based; describing the shapes of identi-
fiable patches in a spatial matrix. Methods of characterizing the
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Fig. 2. Image analysis is an increasingly popular method for describing the spatial complexity of ecosystems and landscapes. In a study carried out by Proulx and Parrott
(2008), the mean information gain was calculated for the pixel values of images of the forest understory (a) and canopy (b) in a mature mixed beech and maple forest. Results
show a clear temporal signature of complexity over the growing season and the method is able to differentiate between different habitat types and between low and high
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iversity sites (photos taken by Joy Ding, Site B44, Gault Nature Reserve, Mont Sain

omplexity of shapes include such simple measures as perimeter-
rea ratios and the ratio of patch area to the area of its bounding box.
oser et al. (2002) proposed a measure that describes landscape

patial complexity by the number of unique points required to trace
oundaries between patches. They applied the measure to land
over data for agricultural landscapes and found a positive correla-
ion with plant species richness. These types of shape-complexity

etrics are analogous to Type 2 measures of complexity. These
nd similar metrics applied at the landscape scale, combined with
ite-specific indicators, could lead to insight into how habitat com-
lexity and biodiversity are linked across spatial scales.

.3. Spatiotemporal measures

Ultimately, the dynamics of ecosystems unfolds in space and
ime; however, methods of characterizing the complexity of such
patiotemporal dynamics are very limited. Kaspar and Schuster
1987) first demonstrated the use of the spatial autocorrelation
unction for detecting complex space–time patterns in two-
imensional data (one temporal and one spatial dimension). Other
uthors have done similar analyses on ecological point data mea-
urements, but typically with the objective of detecting population
ynchrony across space (Bjørnstad et al., 1999). Parrott et al.
Parrott, 2005; Parrott et al., 2008) have proposed an information-
ased measure of spatiotemporal complexity that is applicable to
hree-dimensional raster data, such as space–time mosaics of land
se or other variables. STC characterizes the complexity of three-
imensional structures (“blobs”) in space–time. STC gives a zero
alue to completely uniform space–time matrices, an intermediate
alue to random matrices and a value of one to matrices that have a
ower law distribution of blob volumes (e.g., a matrix occupied by
ostly small, single-celled blobs, one or two large blobs with com-

lex shapes and then many blobs of in-between shapes and sizes).
TC has been successfully applied to the characterization of data
rom ecological models (Fig. 3), series of repeat photographs taken
n a forest ecosystem (Parrott et al., 2008) and to remote sensing
mages of sea surface temperatures (Bottin, 2009).

.4. Structural measures

Structural complexity measures describe the organization and

elationships between components of a system. The natural appli-
ation of these methods is in the analysis of networks, in which
omponents are represented by nodes and relationships are rep-
esented by edges connecting 2 nodes together. Recent research in
omplex systems has shown that a wide variety of different systems
re).

all share a similar, non-random structure characterized by short
diameters (i.e., the shortest path required to traverse the network
is much smaller than for a random network) and long-tailed degree
distributions in which most nodes have 1 or 2 connections and a few
“hubs” have many connections (Watts and Strogatz, 1998; Barabasi
and Albert, 1999; Barabasi, 2009). This non-random yet irregular
structure is thus a signature of a complex system and should be
present in ecosystems as well.

Ecology has a long history of describing ecosystems as networks,
starting with early conceptual models of ecosystems describing the
flows of matter and energy through the systems major reservoirs
(Odum, 1968). The food web concept, in which nodes represent
species or functional groups and feeding relationships are repre-
sented by edges is another well-known network studied in ecology.

Recent work in food web analysis has shown that the structure of
natural food webs is indeed irregular and non-random and, depend-
ing on the resolution of the studied food web, may be characterized
as being complex using measures from graph theory (Bascompte,
2009; Ings et al., 2009, Fig. 4). Analysis of empirical data describ-
ing food webs from aquatic and terrestrial ecosystems has shown
ecosystems to be “small-world” networks, characterized by path
lengths between two randomly chosen species that are consid-
erably shorter than would be expected for a random or regularly
structured network (Montoya and Solé, 2002; Williams et al., 2002).

The implications of a non-random structure are important, since
scale-free systems in particular are robust to the random loss of
nodes (a node selected at random is unlikely to be highly con-
nected) but highly vulnerable to the loss of hubs (Albert et al., 2000).
If ecosystems are indeed structured like other complex systems,
this type of analysis could help conservation managers identify
highly connected “hub” species that should be the focus of conser-
vation efforts. It is also possible that ecosystem “hubs” are keystone
species. Analysis of the robustness of empirical food webs to the loss
of species has shown them to respond similarly to other complex
systems (Dunne et al., 2002), with a threshold point after which the
network is too fragmented to be functional. Interpretation and anal-
ysis of ecosystems from a network perspective may thus provide
useful information to managers on the potential effects (via links
in the network) of interventions. Current research is going beyond
the food web concept to study more general ecological interaction
webs, in which all types of ecological interactions (exploitation,

mutualism, facilitation, neutralism, etc.) are included (Ings et al.,
2009). These studies may contribute additional insight into the
long-standing diversity-stability debate, started by May with early
multi-species models (May, 1973) and may help identify the role
of weak or positive interactions in community structure (McCann,
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Fig. 3. Relationship between grazing intensity and spatiotemporal complexity in a model ecosystem. In this study, increasing numbers of herbivores were added to a
grassland ecosystem for different lengths of time to explore the effects of grazing intensity and duration on the vegetative community. Simulations were carried out with the
spatially explicit, individual-based model, WIST (Parrott and Kok, 2006). Simulations were run for a period of 50 years and the biomass of standing vegetation was recorded
for 10 m × 10 m grid cells on a monthly basis (see (a) for an example). The spatiotemporal complexity of the biomass series was computed for each combination of grazing
intensity and duration ((b), see text for details about the method). Results show that the spatiotemporal complexity remains high for low levels of grazing intensity or for
any level of grazing intensity so long as the duration is sufficiently short to allow the system to recover. A threshold effect occurs after which the spatiotemporal complexity
of the system decreases rapidly, followed by a corresponding decrease in species diversity (not shown).

Fig. 4. Network analysis can be used to describe the structural complexity of an ecosystem. This figure shows the food web for 913 species inhabiting Mont Saint Hilaire
in Québec, Canada. Nodes (colored rectangles) represent species and links represent predator–prey relationships between species. Analysis of the degree distribution
(distribution of the number of links per node) of this food web shows a non-random structure that is typical of many types of complex networks (Arii et al., 2007). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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Fig. 5. Ecological complexity as an ecological indicator. An ecosystem tends towards
greater complexity via the process of self-organization, which draws the system
away from the two extremes of order and disorder to a state of maximal complexity.
This state of maximal complexity is a site-specific attractor which is constrained
by prevailing physical and environmental conditions. Natural disturbance events
may cause an ecosystems state to tend towards greater disorder, whereas human
intervention in the form of energy input can move the system state towards greater
order than might be attainable naturally. Here, an agricultural monoculture, such as
a cornfield planted in rows, serves as an analogy for an ordered ecosystem, whereas
074 L. Parrott / Ecological Ind

000). Lastly, the study of such interaction webs should provide
ore accurate characterizations of the complex structural signa-

ure of ecosystems.

. Discussion: ecological complexity as an ecological
rientor

Recent research continues to confirm the presence of temporal,
patial, spatiotemporal and structural signatures that share com-
on characteristic patterns across all types of complex systems.
easures of complexity are designed to quantify these patterns.
espite the growing acceptance of ecological complexity as an

mportant system attribute, there are very few examples of stud-
es applying complexity measures to analyze ecological data. In
his review, I have summarized the key approaches that have been
aken and identified where more research is needed.

Clearly, the concept of ecological complexity is important for
cology and there is a need to better define it. Ecological com-
lexity is often linked to concepts such as ecological resilience
nd ecological integrity (Levin, 1999; Harris, 2007). Indeed, most
cologists would probably posit a positive correlation between
he degree of complexity of an ecosystem and its “health” or
integrity”, both of which very likely increase a system’s resilience
nd robustness (Loreau et al., 2001; Hooper et al., 2005). Certainly
he heterogeneity of components in a system, providing functional
nd structural redundancy, increases system complexity (in space,
ime and structure) and provides increased robustness and tol-
rance to disturbance (Carlson and Doyle, 2002). An appropriate
easure of complexity should, therefore, also serve as a surrogate
easure of robustness. Additionally, a positive correlation between

abitat complexity and specific diversity is a long-standing hypoth-
sis in ecology that has been confirmed by numerous field studies
or both terrestrial and marine systems (MacArthur and MacArthur,
961; Roth, 1976; Heck and Wetstone, 1977; August, 1983). Fur-
her work should be done to quantify habitat complexity using
patial and temporal complexity measures applied to currently
vailable remote sensing and flux tower data. If a quantitative rela-
ionship were found between habitat complexity and biodiversity,
uch analyses could serve to identify priority areas for conserva-
ion. Complexity may, therefore, be a useful indicator of the state
nd health of an ecosystem.

Complexity may also serve as an indicator of the degree of
aturity or organization of an ecosystem and is, in this sense,

omplementary to measures of self-organization. Müller (2005)
ostulated that the complexity of a natural ecosystem increases
ith its maturity and that via a process of “undisturbed complexi-

ying development” certain features of an ecosystem tend towards
n attractor state which is a function of site conditions and “pre-
ailing ecological functions”. Indeed, many authors have argued
hat it is the processes of self-organization and adaptation that
erve to maintain a complex system in a state of maximal complex-
ty, in the intermediate zone between order and disorder (Nicolis
nd Prigogine, 1977; Kay, 1991; Fath et al., 2004; Müller, 2005).
ig. 5 presents a synthesis of the hypothetical relationship between
his state of maximal complexity and the degree of organization
f a system. In this figure, it is hypothesized that, for a given set
f environmental conditions, the process of self-organization will
raw an undisturbed system towards a local optimum, that can
e measured as the state of maximal complexity. In this context,
ype 2 measures of complexity (as opposed to Type 1) are per-

aps more meaningful as indicators of ecosystem state. Working

rom a similar hypothesis, Kutsch et al. (2001) used a collection of
ndicators, including information-based complexity measures, as a

eans of quantifying the degree of self-organization of different
cosystems, linking self-organization, complexity, and ecosystem
a recently opened gap in a forest, in which seeds have randomly fallen and just
begun to germinate, may be an example of a disordered ecosystem. An undisturbed,
ancient tropical rainforest (central image) is probably the best example of one of the
Earth’s most complex ecosystems.

state. They concluded that a mature beech forest was more complex
and more self-organized than an agricultural field located nearby
and that this difference could be detected using appropriate indica-
tors. Future work should focus on detecting more subtle differences
between similar ecosystems in different stages of development.

Ecosystems are open-systems that, through the process of self-
organization, optimize their internal structures and processes so as
to achieve maximum complexity, in part through the development
of dissipative structures (Nicolis and Prigogine, 1977; Kay, 1991). I
hypothesize that an ecosystem naturally tends towards this state,
maintaining maximal complexity over time even as internal com-
ponents are adapted and replaced. Human interventions or natural
disturbances can draw a system away from this state of maximal
complexity. Conversely, restoration efforts may help the system to
self-organize towards a state of higher complexity (Parrott, 2002).
If the system has been totally degraded to a point that makes
this natural attractor unattainable, e.g., in the case of extreme soil
degradation or pollution, or the prevailing environmental condi-
tions have changed, the ecosystem may find an alternative stable
state which is a local maximum for complexity. Such a change is
equivalent to a catastrophic shift (Scheffer et al., 2001; Scheffer
and Carpenter, 2003).

Proulx and Parrott (2008) proposed complexity as an ecologi-
cal orientor (sensu (Müller and Leupelt, 1998; Müller et al., 2000)):
a property of a system that is optimized as an ecosystem devel-
ops via the process of self-organization. Such ecological orientors
are global level state variables that Müller et al. (2000) argue may
serve as “aggregated indicators for ecological integrity”. Complex-
ity, as an indicator, has an operational advantage over ecological

integrity, in that it is a well-defined concept that can be measured
relative to a known baseline of total randomness or total order. In
this sense, it can be more easily implemented as a holistic indica-
tor in an ecological monitoring program, as opposed to ecological
integrity, which defines the state of an ecosystem relative to a sup-
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osed “natural” or reference state. More research needs to be done
o validate hypotheses linking complexity with other measurable
ndicators of the physical and biological environment. If complex-
ty can be adequately quantified, then optimization of complexity
hould be added to the list of eight ecological orientors, related to
aterial and energetic flow, biomass production and heterogene-

ty, originally proposed by Müller et al. (2000).

. Conclusion

The search for an appropriate measure of ecological complexity
s similar to the search for any holistic indicator of ecosystem state:

anagers and policy makers need a limited number of indicators
pon which they can base environmental assessments and policy
tatements. Appropriate ecological indicators may provide lever-
ge for conservation, preservation and also rehabilitation projects.
iven the high dimensionality of natural ecosystems, there is prob-
bly no one particular measure or approach that will suffice to
ive a complete picture of the system state. The holistic nature
f complexity, however, makes it an appealing candidate amongst
cological indicators. Certainly, the studies cited here do conclude
hat measures of complexity capture at least some system-level
spects of ecosystem state. Many of these measures are data
emanding, and clearly ecological indication should not be based
n sparse or incomplete data. The recent increase of automated
onitoring systems being installed in research sites, as well as the

vailability of high-resolution satellite based remotely sensed data,
hould greatly contribute to the development and application of
ew and existing measures of complexity over the next decade,
apidly improving our understanding of the complex structures and
ynamics of ecosystems.
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