APPROACH TO FEVER & INFECTIONS IN THE IMMUNE COMPROMISED HOST

Cybele Lara R. Abad, MD Clinical Associate Professor Section of Infectious Diseases, UP-PGH

Disclosures

• No financial disclosures

BUT

• Thinking slides

• The content of this presentation is taken from multiple sources.

• In HPIM (Chapter 104, and Chapter 169)

OBJECTIVES

- Review basic immunology
 - Immune defects and the corresponding infections
- Describe the approach to febrile neutropenia
- Describe infections in (non-HIV) immune compromised host

– SOT, HSCT

• Review strategies for prevention

IMMUNITY AND IMMUNE DEFECTS

BACK to the BASICS

© 2011 Pearson Education, Inc.

Non-Specific (Innate) Immunity

Specific (Adaptive) Immunity

An overview of the immune response

Antigens or Antigenic Fragments in Body Fluids

Most antigens must either infect cells or be "processed" by phagocytes before specific defenses are activated. The trigger is the appearance of antigens or antigenic fragments in plasma membranes; this is called **antigen presentation**.

Specific Defenses

Antigen presentation triggers specific defenses, or an immune response.

© 2011 Pearson Education, Inc.

Causes of Immune Deficiency

Primary Immune Deficiency	Acquired Immu	ine Deficiency
B-Cell Deficiencies X-LINKED AGAMMAGLOBULINAEMIA COMMON VARIABLE IMMUNODEFICIENCY (CVID) SELECTIVE IgA DEFICIENCY IgG SUBCLASS DEFICIENCY IMMUNODEFICIENCY WITH THYMOMA TRANSIENT HYPOAG AMMAGLOBULUNAEMIA OF INFANCY	Anatomic Abno Bronchial seque Functional Abn Cystic Fibrosis,	ormalities estration, COPD ormalities COPD
T-Cell & Combined T- & B-Cell Deficiencies SEVERE COMBINED IMMUNODEFICIENCY DIGEORGE'S SYNDROME X-LINKED LYMPHOPROLIFERATIVE SYNDROME	Transient Immu Pregnancy Severe burn	Ine Deficiency Post-surgery <u>Mumps,</u> CMV, TB
HYPER IgM SYNDROME MHC CLASS II DEFICIENCY ATAXIA-TELEANGIECTASIA	Secondary immune deficiency	
WISKOTT - ALDRICH' S SYNDROME HYPER IgM SYNDROMES, AR- forms CHRONIC MUCOCUTANEOUS CANDIDIASIS	Diabetes Lymphoma	HIV Leukemia
Phagocyte Deficiencies CHRONIC GRANULOMATOUS DISEASE, (CDG) INTERFERON & / INTERLEUKIN 12 DEFICIENCIES	SLE , RA Iron overload	Chronic renal/liver failure Malnutrition
FAMILIAL HE MOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, (FHL) KOSTMANN'S SYNDROME CYCLIC NEUTROPENIA LEUCOCYTE ADHESION DEFICIENCY, (LAD) CHÉDIAK-HIGASHI'S SYNDROME HYPER IgE SYNDROME, (HIES) Complement Deficiencies PROPERDIN DEFICIENCY MANNAN-BINDING LECTIN DEFICIENCY, (MBL) HEREDITARY ANGIOEDE MA, (HAE) Deficiencies of all other complements	Iatrogenic Medications for chemotherapy, transplant & autoimmune disorders Irradiation Splenectomy Aging	

Iatrogenic Causes of Immune Deficiency

- Chemotherapeutic agents e.g. Doxorubicin, vinblastin, vincristine
- Transplant immunosuppressants
 e.g. Azathioprine, MTX, cyclophosphamide
- Other immunomodulators

e.g. Bevacizumab (VEGF), trastuzumab (HER2), cetuximab (EGFR), gemtuzumab (CD33)

Irradiation

IMPAIRED PHAGOCYTIC FUNCTION

Consequences of Chemotherapy

Consequences of Cytotoxic Medications

Defect	Pathogen		
Granulocytopenia	Gram-positive cocci Staphylococcus aureus Coagulase-neg staph Viridans group strep Granulicatella & Abiotrophia Enterococci spp	<u>Gram-negative bacilli</u> Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Enterobacter & Citrobacter	Aspergillus Mucor
Damaged integument			
Skin-central venous catheter related	Coagulase-neg staphylococci Staphylococcus aureus Corynebacteria	Stenotrophomonas m Pseudomonas aeruginosa Acinetobacter species	Candida spp Rhizopus spp
Oral mucositis	Viridans group strep Abiotrophia & Granulicatella Rothia mucilaginosa Herpes simplex virus	Capnocytophaga spp Fusobacterium spp	Candida spp
Gut mucosal barrier injury	Coagulase-neg staph Enterococci spp	Escherichia coli Pseudomonas aeruginosa	Candida spp
Neutropenic enterocolitis	Clostridium spp Staphylococcus aureus	Pseudomonas aeruginosa	Candida spp

IMPAIRED CELLULAR IMMUNITY

IMPAIRED HUMORAL IMMUNITY

Monoclonal Antibody effects on Immunity

Salvana and Salata, 2009

SUMMARY of IMMUNE DEFECTS

DEFECT	CONSEQUENCE	PATHOLOGY	PATHOGENS
HUMORAL	Impaired opsonization, phagocytosis, Ab dependent cytotoxicity	Recurrent sinopulmonary infections	SIN (Streptococcus pneumoniae, H. influenzae, Neisseria sp.)
CELLULAR	Impaired clearance of endogenous or intracellular pathogens	Disseminated infection; pulmonary infection	Human herpes viruses Adenovirus Listeria HPV TB Nocardia PCP Cryptococcus Endemic fungi

SUMMARY of IMMUNE DEFECTS

DEFECT	CONSEQUENCE	PATHOLOGY	PATHOGENS
PHAGOCYTIC	Impaired microbial killing or clearance at sites of tissue invasion	Recurrent skin/lung/liver cold abscesses	S. aureus, CoNS Viridans streptococci E. coli P. aeruginosa K. pneumoniae

NEUTROPENIC FEVER

Clinical vignette

- 54/F with acute myelogenous leukemia (AML) presents at the ER with fever/chills. She also has some shortness of breath
- 1 week PTC, she received her 2nd round of chemotherapy.
- VS are stable. Temp is 39° C. Lungs with rales, bilaterally. CBC = Hgb 102g/L WBC 1.2 cells /mm³ (S 4%, L 90% M 6%)

DEFINITION

- Fever is defined as a single oral temperature measurement of >38.3C (101F) or a temperature of >38.0C (100.4F) sustained over a 1-h period.
- Neutropenia is defined as an absolute neutrophil count (ANC) of <500 cells/mm³ or an ANC that is expected to decrease to <500 cells/mm³ during the next 48 h.

NEUTROPENIC FEVER

 Fever during chemotherapy-induced neutropenia may be the only indication of a severe underlying infection.

• NF is a medical emergency and physicians must be able to assess risk, diagnose, and appropriately manage patients with NF

Sequence of events during neutropenia

Causes of Fever in Febrile Neutropenia

Microbiologically defined infection (45%)

Approach to NF

Clinical Infectious Diseases 2011;52(4):e56–e93

Diagnostic Evaluation

TEST	REASON
CBC	ANC
Creatinine	Kidney function
ALT, AST	Liver function
BLOOD CULTURES X2	Bacteremia
CXR	Pneumonia
Others	Urine, etc.

Common Pathogens in NF

Table 1. Common Bacterial Pathogens in Neutropenic Patients

Common gram-positive pathogens

Coagulase-negative staphylococci

Staphylococcus aureus, including methicillin-resistant strains

Enterococcus species, including vancomycin-resistant strains

Viridans group streptococci

Streptococcus pneumoniae

Streptococcus pyogenes

Common gram-negative pathogens

Escherichia coli

Klebsiella species

Enterobacter species

Pseudomonas aeruginosa

Citrobacter species

Acinetobacter species

Stenotrophomonas maltophilia

Clinical Infectious Diseases 2011;52(4):e56–e93

Harrison's Principles of Internal Med. p 490, Fig 104-2

Antimicrobial Pearls

- High-risk patients require hospitalization for IV empirical antibiotic therapy; monotherapy with an anti-pseudomonal β-lactam agent, such as cefepime, a carbapenem, or piperacillin-tazobactam, is recommended (A-I).
- Other antimicrobials (aminoglycosides, fluoroquinolones, and/or vancomycin) may be added to the initial regimen for management of complications (eg, hypotension and pneumonia) or if antimicrobial resistance is suspected or proven (B-III).
- Vancomycin (or other agents active against aerobic gram positive cocci) is NOTrecommended as a standard part of the initial antibiotic regimen for fever and neutropenia (A-I).

Clinical Infectious Diseases 2011;52(4):e56– e93

Prevention

- Prophylaxis for high-risk patients with prolonged, or profound neutropenia can be considered

 Fluoroquinolone
- Age appropriate vaccination
 E.g. yearly influenza vaccinations
- In certain populations, anti-fungal prophylaxis may be considered
 - E.g. HSCT recipients, those undergoing intensive chemotherapy

SOLID ORGAN TRANSPLANT

INFECTIONS IN LIVER/KIDNEY TRANSPLANT RECIPIENTS

Clinical Vignette

- A U.S.-born adolescent, aged 14 years, with endstage renal disease as a result of a single dysplastic kidney received a kidney transplant from a deceased donor. He had never traveled outside the United States.
- 10 weeks post –transplant he complained of fever, rash, malaise, anorexia, nausea, vomiting, and diarrhea.
- Two other recipients from the same donor complained of similar symptoms.

What do you think he has?

- A. A nosocomial infection
- B. An opportunistic infection
- C. A donor-derived infection
- D. Reactivation of latent infection
What do you think he has?

- A. A nosocomial infection
- B. An opportunistic infection

C. A donor-derived infection

D. Reactivation of latent infection

- The CDC requested stored pre-transplant serum from all organ recipients, along with stored donor serum for testing, to determine if infection with *Strongyloides* in the recipients was donor derived or reactivation of chronic infection.
- Evaluation of these specimens revealed that the **donor** had evidence of chronic infection based on positive serologic results.

MMWR Morb Mortal Wkly Rep. 2013 Apr 12;62(14):264-6

PATHOGENESIS OF INFECTION

SOT

• Most infections occur in the first few months after transplantation.

• Infections may be donor or recipient-derived, community or hospital acquired.

 Similar to HSCT patients, infections follow a "timeline"

TIMELINE OF INFECTIONS

Day 0-30:

- Usually either donor-derived infection or nosocomial infections.
- The longer the transplant surgery, the higher the risk of infection. Infections may be associated with surgical technique
- Opportunistic infections are generally absent during the first month after transplantation

Day 31-4 mos

 Viral pathogens and allograft rejection are responsible for the majority of febrile episodes that occur during this period

 Trimethoprim—sulfamethoxazole prophylaxis generally prevents most urinary tract infections and opportunistic infections such as pneumocystis pneumonia

> 6 months

 The risk of infection diminishes 6 months after transplantation, since immunosuppressive therapy is usually tapered in recipients who have satisfactory allograft function.

 Transplant recipients have a persistently increased risk of infection due to communityacquired pathogens.

"Never Do Wells"

- Recurrent infection may develop in some patients despite minimization of their immunosuppression.
- These patients are at increased risk for opportunistic infection with listeria or nocardia species, invasive fungal pathogens such as zygomycetes and dematiaceous molds, and unusual organisms

TABLE 169-4 COMMON INFECTIONS AFTER SOLID ORGAN TRANSPLANTATION, BY SITE OF INFECTION				
	Period after Transplantation			
Infected Site	Early (<1 Month)	Middle (1–4 Months)	Late (>6 Months)	
Donor organ	Bacterial and fungal infections of the graft, anastomotic site, and surgical wound	CMV infection	EBV infection (may present in allograft organ)	
Systemic	Bacteremia and candidemia (often resulting from central venous catheter colonization)	CMV infection (fever, bone marrow sup- pression)	CMV infection, especially in patients given early posttransplantation prophylaxis; EBV proliferative syndromes (may occur in donor organs)	
Lung	Bacterial aspiration pneumonia with prevalent nosocomial organisms asso- ciated with intubation and sedation (highest risk in lung transplantation)	Pneumocystis infection; CMV pneumonia (highest risk in lung transplantation); Aspergillus infection (highest risk in lung transplantation)	Pneumocystis infection; granulomatous lung diseases (nocardial and reactivated fungal and mycobacterial diseases)	
Kidney	Bacterial and fungal (<i>Candida</i>) infec- tions (cystitis, pyelonephritis) associ- ated with urinary tract catheters (high- est risk in kidney transplantation)	Kidney transplantation: BK virus infection (associated with nephropathy); JC virus infection	Kidney transplantation: bacterial infections (late urinary tract infections, usually not asso- ciated with bacteremia); BK virus infection (nephropathy, graft failure, generalized vasculopathy)	
Liver and biliary tract	Cholangitis	CMV hepatitis	CMV hepatitis	
Heart		<i>Toxoplasma gondii</i> infection (highest risk in heart transplantation); endocarditis (<i>Aspergillus</i> and gram-negative organisms more common than in general popula- tion)	<i>T. gondii</i> (highest risk in heart transplantation)	
Gastrointestinal tract	Peritonitis, especially after liver trans- plantation	Colitis secondary to Clostridium difficile infection (risk can persist)	Colitis secondary to C. <i>difficile</i> infection (risk can persist)	
Central nervous system		Listeria infection (meningitis); T. gondii infection; CMV infection	Listerial meningitis; cryptococcal meningitis; nocardial abscess; JC virus–associated PML	

Harrison's Principles of Internal Med. Table 169-4

< 1 month

Infection w/ MDROs: MRSA. VRE, ESBL G-neg, KPC, Candida spp (nonalbicans) Aspiration, catheter & wound infections Anastomotic leaks & ischemia C difficile colitis Donor derived infection (uncommon): HSV, LCMV, rabies, WNV. HIV. Trypanosoma, cruzii Plasmodium spp, Wucheria bancrofti, Schistosoma spp.

Recipient derived infection (colonization): Aspergillus, Pseudomonas Acinetobacter

1 - 6 months

With PCP & antiviral (CMV, HBV) prophylaxis: Polyomavirus BK infection, nephropathy C. Difficile colitis HCV infection Adenovirus infection, Influenza Cryptococcosis TB Anastomotic complications

Without prophylaxis: PCP Infection with herpesvirus (HSV, VZV, CMV, EBV) HBV infection Infection with listeria, nocardia, toxoplasma, strongyloides, leishmania, T. cruzii

> 6 months

Pneumonia, UTI Infection with aspergillus, atypical molds, Mucor spp Infection with nocardia, rhodococcus spp Late viral infections: CMV infection (colitis, retinitis) Hepatitis (HCV, HBV) **HSV** encephalitis Community acquired (SARS, West Nile, dengue) JC polyomavirus (PML) Skin cancer, lymphoma (PTLD)

HEMATOLOGIC TRANSPLANTS

INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANT (HSCT) RECIPIENTS

DEFINITION OF TERMS

TERM	DEFINITION
SYNGENEIC	Transplant from an <i>identical</i> twin
ALLOGENEIC	Transplant from a sibling or unrelated donor
AUTOLOGOUS	Transplant from "self"
ENGRAFTMENT	Donor transplant is accepted by the recipient
GRAFT versus HOST DISEASE (GVHD)	An immunologic reaction by the donor lymphocytes against the recipient, causing inflammation of the target tissues

Type of Hematopoietic Stem Cell Transplant	Source of Stem Cells	Risk of Early Infection: Neutrophil Depletion	Risk of Late Infection: Impaired T and B Cell Function	Risk of Ongoing Infection: GVHD and latrogenic Immunosuppression	Graft vs. Tumor Effect
Autologous	Recipient (self)	High risk; neutrophil recovery sometimes prolonged	~1 year	Minimal to no risk of GVHD and late-onset severe infection	None (–)
Syngeneic (genetic twin)	Identical twin	Low risk; 1–2 weeks for neutrophil recovery	~1 year	Minimal risk of GVHD and late-onset severe infection	+/-
Allogeneic related	Sibling	Low risk; 1–2 weeks for neutrophil recovery	~1 year	Minimal to moderate risk of GVHD and late-onset severe infection	++
Allogeneic related	Child/parent (haploidentical)	Intermediate risk; 2–3 weeks for neutrophil recovery	1–2 years	Moderate risk of GVHD and late-onset severe infection	++++
Allogeneic unrelated adult	Unrelated donor	Intermediate risk; 2–3 weeks for neutrophil recovery	1-2 years	High risk of GVHD and late-onset severe infection	++++
Allogeneic unrelated cord blood	Unrelated cord-blood units (×2)	Intermediate to high risk; neutrophil recovery sometimes prolonged	Prolonged	Minimal to moderate risk of GVHD and late-onset severe infection	++++
Allogeneic mini (nonmyeloablative)	Donor (transiently coexisting with recipient cells)	Low risk; neutrophil counts close to normal	1-2+ years	Variable risk of GVHD and late-onset severe infection ^a	++++ (but develops slowly)

TABLE 169-1 RISK OF INFECTION, BY TYPE OF HEMATOPOIETIC STEM CELL TRANSPLANT

RISK FACTORS OF INFECTION in HSCT

RISK FACTORS OF INFECTION in HSCT

PRE-TRANSPLANT FACTORS

- Includes viral serologic status of the transplant recipient (and donor)
 DONOR = D / RECIPIENT = R
- The donor may accidentally transmit infection to the recipient OR
- There are *latent* infections that may reactivate and proliferate once the recipient is immunosuppressed

Which combination is LOWEST RISK for CMV INFECTION?

 Herpes viruses are most common after transplantation because many patients are latently infected w/ one or more species that reactivate

TABLE 169-3 HERPESVIRUS SYNDROMES OF TRANSPLANT RECIPIENTS

Virus	Reactivation Disease
Herpes simplex virus type 1	Oral lesions
	Esophageal lesions
	Pneumonia (primarily HSC transplant recipients)
	Hepatitis (rare)
Herpes simplex virus type 2	Anogenital lesions
	Hepatitis (rare)
Varicella-zoster virus	Zoster (can disseminate)
Cytomegalovirus	Associated with graft rejection
	Fever and malaise
	Bone marrow failure
	Pneumonitis
	Gastrointestinal disease
Epstein-Barr virus	B cell lymphoproliferative disease/ lymphoma
	Oral hairy leukoplakia (rare)
Human herpesvirus type 6	Fever
	Delayed monocyte/platelet engraftment
	Encephalitis (rare)
Human herpesvirus type 7	Undefined
Kaposi's sarcoma-associated virus	Kaposi's sarcoma
	Primary effusion lymphoma (rare)
	Multicentric Castleman's disease (rare)
	Marrow aplasia (rare)

PRE-TRANSPLANT FACTORS

- Higher risk with extensive pretransplant immunosuppressive therapy (eg, fludarabine, clofaribine), prolonged pretransplant neutropenia, or pretransplant infection
- Higher risk with more advanced disease at the time of transplant

RISK FACTORS OF INFECTION in HSCT

TRANSPLANT SOURCE

TRANSPLANT SOURCE

 The distinguishing determinant of infectious risk between between *autologous* and *allogeneic* grafts is the associated risk by ongoing immunosuppression from GVHD and its therapy

ELEMENTS OF INFECTION in HSCT

TIMING OF TRANSPLANT

- There are "3" periods of immunologic deficiency in HSCT recipients
 - Pre-engraftment (0-30 days)
 - Engraftment (30-100)
 - Post engraftment (>100)
- Understanding the immune deficiency in each period helps in recognizing uncommon presentation of infectious pathogens

Phases of Opportunistic Infections

Biol Blood Marrow Transplant 15: 1143-1238 (2009)

TABLE 169-2 COMMON SOURCES OF INFECTIONS AFTER HEMATOPOIETIC STEM CELL TRANSPLANTATION

	Period after Transplantation		
Infection Site	Early (<1 Month)	Middle (1–4 Months)	Late (>6 Months)
Disseminated	Aerobic bacteria (gram-negative, gram-positive)	Candida, Aspergillus, EBV	Encapsulated bacteria (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis)
Skin and mucous membranes	HSV	HHV-6	VZV, HPV (warts)
Lungs	Aerobic bacteria (gram-negative, gram-positive), <i>Candida, Aspergillus,</i> other molds, HSV	CMV, seasonal respiratory viruses, Pneumocystis, Toxoplasma	Pneumocystis, Nocardia, S. pneumoniae
Gastrointestinal tract	Clostridium difficile	CMV, adenovirus, Bradyrhizobium enterica (cord blood cells)	EBV, CMV, B. enterica (cord blood cells)
Kidney		BK virus, adenovirus	
Brain		HHV-6, Toxoplasma	Toxoplasma, JC virus (rare)
Bone marrow		CMV, HHV-6	CMV, HHV-6

Timeline

Biol Blood Marrow Transplant 15: 1143-1238 (2009)

SUMMARY OF KEY RISK FACTORS

Reducing the risk of infection from transplant immunosuppression

PREVENTIVE STRATEGIES

- Ways to reduce risk of infection for SOT recipients
 - Donor selection/Donor and recipient screening
 - Vaccination
 - Pre-emptive treatment starting treatment ONCE there is evidence of infection or disease
 - Universal prophylaxis starting treatment for primary prevention BEFORE there is evidence of infection

TABLE 169-6 VACCINATION OF HEMATOPOIETIC STEM CELL TRANSPLANT (HSCT) AND SOLID ORGAN TRANSPLANT (SOT) RECIPIENTS

Type of Transplantation

Vaccine	HSCT	SOT ^o
Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis	Immunize after transplanta- tion. See CDC-ACIP recom- mendations. (For <i>S. pneu- moniae</i> , a new primary series may be indicated.)	Immunize before trans- plantation. See CDC-ACIP recommendations. (For <i>S. pneumoniae</i> , a booster dose of polysaccharide vaccine after 5 years is recommended.)
Influenza	Vaccinate in the fall. Vaccinate close contacts.	Vaccinate in the fall. Vaccinate close contacts.
Polio	Administer inactivated vac- cine.	Administer inactivated vaccine.
Measles/mumps/ rubella	Immunize 24 months after transplantation if GVHD is absent.	Immunize before transplantation.
Diphtheria, per- tussis, tetanus	Reimmunize after transplan- tation with primary series, DTaP. See IDSA 2013 recom- mendations (www.idsociety .org/Other_Guidelines/ #immunizationForthe CompromisedHost).	Immunize or boost before transplantation with Tdap; give boosters at 10-year intervals or as required.
Hepatitis B and A	Reimmunize after transplantation. See recommendations.	Immunize before transplantation.
Human papillomavirus	Recommendations are pend- ing (www.cdc.gov/std/hpv/ stdfact-hpv-vaccine-hcp.htm).	Recommendations are pending.

TAKE HOME POINTS

- Individuals who undergo chemotherapy and transplant comprise a special population who are at increased risk of infection
- Both pre-transplant and transplant factors contribute to the increased risk of infection in SOT/HSCT patients.
- The TIMING OF INFECTION is critical in trying to determine the type of infection
TAKE HOME POINTS

• Understanding the underlying immune deficiency is KEY in identifying possible pathogens.

 SOT recipients are immune suppressed FOR LIFE, (while HSCT recipients are NOT, though recovery is prolonged).

History is important. If you don't know history it is as if you were born yesterday. And if you were born yesterday, anybody up there in a position of power can tell you anything, and you have no way of checking up on it.

Howard Zinn -

AZQUOTES

WHAT HAPPENED AUGUST 21, 1983? (And no, It's not JUST Eid al-Adha (Feast of the Sacrifice)

MAG-ARAL. MAGBASA. (Facebook not counted)

QUESTIONS?

EMAIL: CYBELEMD@YAHOO.COM