

Intertrochanteric Fractures 6

Mark Karadsheh

Introduction

- Extracapsular fractures of the proximal femur between the greater and lesser trochanters
- Epidemiology
 - o incidence
 - roughly the same as femoral neck fractures
 - demographics
 - female:male ratio between 2:1 and 8:1
 - typically older age than patients with femoral neck fractures
 - risk factors
 - proximal humerus fractures increase risk of hip fracture for 1 year ②
- Pathophysiology
 - mechanism
 - elderly
 - low energy falls in osteoporotic patients
 - young
 - high energy trauma
- Prognosis
 - nonunion and malunion rates are low
 - 20-30% mortality risk in the first year following fracture
 - factors that increase mortality
 - male gender (25-30% mortality) vs female (20% mortality)
 - higher in intertrochanteric fracture (vs femoral neck fracture)
 - operative delay of >2 days ②
 - age >85 years
 - 2 or more pre-existing medical conditions
 - ASA classification (ASA III and IV increases mortality)

Anatomy

- Osteology
 - o intertrochanteric area exists between greater and lesser trochanters
 - made of dense trabecular bone
 - calcar femorale
 - vertical wall of dense bone that extends from posteromedial aspect of femoral shaft to posterior portion of femoral neck
 - helps determine stable versus unstable fracture patterns

Classification

- Stability of fracture pattern is arguably the most reliable method of classification
 - stable
 - definition
 - intact posteromedial cortex
 - clinical significance
 - will resist medial compressive loads once reduced
 - unstable
 - definition
 - comminution of the posteromedial cortex
 - thinner lateral wall thickness
 - measured from 3 cm distal from innominate tubercle at 135 degrees to the fracture site
 - <20.5 mm suggests risk of postoperative lateral wall fracture
 - should be treated with intramedullary implant rather than sliding hip screw
 - clinical significance
 - fracture will collapse into varus and retroversion when loaded
 - examples
 - fractures with a large posteromedial fragment
 - i.e., lesser trochanter is displaced
 - subtrochanteric extension
 - reverse obliquity
 - oblique fracture line extending from medial cortex both laterally and distally

Presentation

- Physical Exam
 - painful, shortened, externally rotated lower extremity

Imaging

- Radiographs
 - recommended views

ORTH	+0	BULLE	TSV C	7	SEAR	CH		JOIN	NOW	LOG	IN
=	\Diamond	Topics	Techniques	QBank	Evidence	Cases	Videos	Podcasts	Gro 📤	< ,	>

- useful if radiographs are negative but physical exam consistent with fracture
- MRI useful to evaluate intertrochanteric extension with isolated greater trochanteric fracture patterns ?

Treatment

- Nonoperative
 - nonweightbearing with early out of bed to chair
 - indications
 - nonambulatory patients
 - patients at high risk for perioperative mortality
 - outcomes
 - high rates of pneumonia, urinary tract infections, decubiti, and DVT
- Operative
 - sliding hip compression screw
 - indications ② ②
 - stable intertrochanteric fractures
 - outcomes
 - equal outcomes when compared to intramedullary hip screws for stable fracture patterns
 - intramedullary hip screw (cephalomedullary nail)
 - indications
 - stable fracture patterns
 - unstable fracture patterns ②
 - reverse obliquity fractures ② ②
 - 56% failure when treated with sliding hip screw
 - subtrochanteric extension
 - lack of integrity of femoral wall
 - associated with increased displacement and collapse when treated with sliding hip screw
 - increased risk of lateral wall fracture with decreasing lateral wall thickness ?
 - outcomes
 - equivalent outcomes to sliding hip screw for stable fracture patterns
 - use has significantly increased in last decade
 - arthroplasty
 - indications
 - severely comminuted fractures
 - preexisting symptomatic degenerative arthritis
 - osteoporotic bone that is unlikely to hold internal fixation
 - salvage for failed internal fixation

Techniques

Sliding hip compression screw

- o pros
 - allows dynamic interfragmentary compression
 - low cost
 - no violation of hip abductors
- o cons
 - open technique
 - increased blood loss
 - not advisable in unstable fracture patterns ②
 - may result in
 - collapse
 - limb shortening
 - medialization of shaft
 - can cause anterior spike malreduction in left-sided, unstable fractures due to screw torque ②

• Intramedullary hip screw

- technique
 - short implants with optional distal locking
 - standard obliquity fractures
 - long implants
 - standard obliquity fractures
 - reverse obliquity fractures
 - subtrochanteric extension
- o pros
 - percutaneous approach
 - minimal blood loss
 - may be used in unstable fracture patterns
- o cons
 - periprosthetic fracture
 - higher cost than sliding hip screw ??
 - requires violation of hip abductors for insertion

Arthroplasty

- technique
 - calcar-replacing prosthesis often needed
 - must attempt fixation of greater trochanter to shaft
- o pros
 - possible earlier return for full weight bearing
- cons
 - increased blood loss
 - may require prosthesis that some surgeons are unfamiliar with

Complications

- Implant failure and cutout
 - incidence
 - most common complication

ORTHO BULLETS Q

TOPICS	TECHNIQUES	QBANK	PRODUCTS	ABOUT	HELP	
TRAUMA	TRAUMA	CASES	PEAK & STUDY	COMPANY	FAQ	
SPINE	NE SPINE		PLANS	PRIVACY	PLATFORM	
SHOULDER &	SHOULDER &		PASS	POLICY	TUTORIAL VIDEOS PASS TUTORIAL VIDEOS	
ELBOW	ELBOW	POSTS	SELF-	CONTACT US		
KNEE &	KNEE & SPORTS	EVIDENCE	ASSESSMENT EXAM	331111131		
SPORTS	PEDIATRICS		POCL FREE CME		IPHONE APP	
PEDIATRICS	RECON		TOOLTINEE OME			
RECON	RECON		TESTIMONIALS		ANDROID APP	
NECON	HAND				PRIVACY POLICY	
HAND	FOOT & ANKLE		Feedback			
FOOT &			recapacit		TERMS OF USE	
ANKLE	PATHOLOGY					
PATHOLOGY	APPROACHES					

Copyright © 2020 Lineage Medical, Inc. All rights reserved.