FORMATTING GUIDE FOR EQUATIONS USING TEX ON VLE

Language Conventions

There are two ways to identify a TeX sequence in your text: The first is to surround it with \$\$ markers. To invoke a particular command or control sequence, use the backslash, \. A typical control sequence looks like:

$$\ x = \frac{\sqrt{144}}{2} \times (y + 12)$$

$$x = \frac{\sqrt{144}}{2} \times (y + 12)$$

Fraction and square root.

Additional spaces can be placed into the equation using the backslash \ with a space as a trailing character.

The second way to use TeX code is to surround it with $\ (and \)$. Any TeX that is surrounded by \$\$'s is rendered on its own line, separated from the rest of the paragraph. On the contrast, TeX code that appears between $\ (and \)$ appears right where it is used in a line and can thus be used to embed shorter formulas or variable names within ordinary text.

Reserved Characters and Keywords

Most characters and numbers on the keyboard can be used at their default value. As with any computing language, though, there are a set of reserved characters and keywords that are used by the program for its own purposes. TeX Notation is no different, but it does have a very small set of Reserved Characters. This will not be a complete list of reserved characters, but some of these are:

To use these characters in an equation just place the $\$ in front of them like $\$ or $\$. If you want to use the backslash, just use $\$ backslash. The only exception here seems to be the &, ampersand.

Superscripts, Subscripts and Roots

Superscripts are recorded using the caret, ^, symbol. An example for a Maths class might be:

Subscripts are similar, but use the underscore character.

$$3x_2 \times 2x_3$$

This is OK if you want superscripts or subscripts, but square roots are a little different. This uses a control sequence.

$$\$ \sqrt{64} = 8$$

You can also take this a little further, but adding in a control character. You may ask a question like:

Using these different commands allows you to develop equations like:

\$\$ The \sqrt{64} \ \times \ 2 \ \times \ 4^3 \ = \ 1024 \\
\$\$
$$The\sqrt{64} \times 2 \times 4^3 = 1024$$

Superscripts, Subscripts and roots can also be noted in Matrices.

Fractions

Fractions in TeX are actually simple, as long as you remember the rules.

$$\frac{numerator}{denominator}$$

 $\$ \frac{numerator}{denominator} \\$ which produces denominator

This can be given as:

$$\frac{5}{10}$$
 is equal to $\frac{1}{2}$

This is entered as:

$$\$ \frac{5}{10} \ is \ equal \ to \ \frac{1}{2}.$$$

With fractions (as with other commands) the curly brackets can be nested so that for example you can implement negative exponents in fractions. As you can see,

$$\frac{5^{-2}}{3}$$
 \$\$\frac {5^{-2}}{3}\$\$ will produce

$$$\left(\frac{3}{4}\right)^{-3}$$$
 \$\$\left(\frac{3}{4}\right)^{-3}\$\$ will produce

\$\frac{3}{4^{-3}}\$\$ will produce
$$\frac{3}{4^{-3}}$$

$$3^{-3}$$

You likely do not want to use $\frac{3}{4}^{-3}$ as it produces 4

Brackets

As students advance through Maths, they come into contact with brackets. Algebraic notation depends heavily on brackets. The usual keyboard values of (and) are useful, for example:

$$d=2 \times (4-j)$$

This is written as:

$$$$ d = 2 \setminus times \setminus (4 \setminus - \setminus j) $$$$

Usually, these brackets are enough for most formulae but they will not be in some circumstances. Consider this:

$$4x^3 + (x + \frac{42}{1+x^4})$$

Is OK, but try it this way:

$$4x^3 + \left(x + \frac{42}{1+x^4}\right)$$

This can be achieved by:

$$$$ 4x^3 + \left(\frac{42}{1 + x^4} \right) $$$$

A simple change using the \left(and \right) symbols instead. Note the actual bracket is both named and presented. Brackets are almost essential in Matrices.

Ellipsis

The Ellipsis is a simple code:

$$x_1, x_2, \ldots, x_n$$

Written like:

$$$x_1, x_2, \ldots $$$